吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 918-924.doi: 10.13229/j.cnki.jdxbgxb201404004

• • 上一篇    下一篇

考虑全局最优性的汽车微观动态轨迹规划

孙浩, 邓伟文, 张素民, 吴梦勋   

  1. 吉林大学 汽车仿真与控制国家重点实验室, 长春 130022
  • 收稿日期:2013-11-20 出版日期:2014-07-01 发布日期:2014-07-01
  • 通讯作者: 邓伟文(1963-), 男, 教授, 博士生导师.研究方向:汽车动态仿真与控制.E-mail:kdeng@jlu.edu.cn
  • 作者简介:孙浩(1988-), 男, 博士研究生.研究方向:汽车动态仿真与控制.E-mail:vcisunhao@163.com
  • 基金资助:
    国家自然科学基金项目(51175215); 

Micro vehicle dynamic trajectory plan with global optimality

SUN Hao, DENG Wei-wen, ZHANG Su-min, WU Meng-xun   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2013-11-20 Online:2014-07-01 Published:2014-07-01

摘要: 针对智能汽车关键技术之一的自主行驶问题, 提出了一种分层决策框架, 并重点对框架中的下层轨迹规划问题进行了研究。本文首先提出了一种将微观轨迹规划问题抽象为不同终点约束换道行为的方法, 并提出了一种能够同时满足行驶安全和全局性能最优的动态轨迹规划方法。根据全局性能最优指标, 提出了一种以三次多项式表达的最优换道轨迹;随后, 本文在交通车轨迹预估的基础上, 以简单车辆动力学模型为轨迹发生器建立了汽车行驶的安全搜索空间;最后以最优换道轨迹为目标决策出汽车行驶的最终轨迹。在Simulink仿真平台中对本文方法进行了仿真试验并证明了其有效性。

关键词: 车辆工程, 动态轨迹规划, 汽车智能化, 无人驾驶

Abstract: A dynamic trajectory planning method of intelligent driving is proposed. Under the proposed hierarchical framework with three different layers in trajectory planning, the micro level is the focus to determine that how vehicle travels to ensure its safety and to achieve optimal driving performance and efficiency. The micro driving maneuvers that constitute any complex driving tasks were extracted. A cubic polynomial is used to represent the planned lane-change trajectory. A trajectory family is generated based on a vehicle steady-state kinetic model, which is used to ensure its safety against the traffic obstacles. Finally, a trajectory is selected based on optimization among multiple objectives on driving safety, efficiency and performance. The proposed method is valid and effective under Simulink environment.

Key words: vehicle engineering, dynamic trajectory planning, vehicle intelligence, autonomous driving

中图分类号: 

  • U461.99
[1] 陈清阳, 张小波, 孙振平, 等. 非结构化环境下自主车辆轨迹规划方法[J]. 中南大学学报:自然学科版, 2011, 42(11):3384-3387. Chen Qing-yang, Zhang Xiao-bo, Sun Zhen-ping, et al. Trajectory planning for autonomous driving in unstructured environments [J]. Journal of Central South University (Nature Science), 2011, 42(11): 3384-3387.
[2] Jeff J, Kris H.Optimal acceleration-bounded trajectory planning in dynamic environments along a specified path[C]∥Proceeding of the 2012 IEEE Conference on Robotics and Automation, IEEE Press, 2012.
[3] Fraichard Thierry. Trajectory planning in a dynamic workspace: a 'state-time space' approach[J]. Advanced Robotics, 1998, 13(1):75-94.
[4] Racheal A B. Velocity occupancy space: autonomous navigation and dynamic obstacle avoidance with sensor and actuation error[D]. Michigan: University of Michigan, 2012.
[5] Raja P. Optimal path planning of mobile robots:a review[J]. International Journal of Physical Sciences, 2012, 7(9):1314-1320.
[6] Zhang Su-min, Deng Wei-wen, Zhao Qing-rong, et al. An intelligent driver model with trajectory planning[C]∥IEEE Conference on Intelligent Transportation Systems, 2012:876-881.
[7] Jian Yang. Real-time trajectory planning for ground and aerial vehicle in dynamic environment[D]. Florida: University of Central Florida, 2008.
[8] Taehyun S, Ganesh A, Yuan Hong-liang. Autonomous vehicle collision avoidance system using path planning and model-predictive-control-based active front steering and wheel torque control[J]. Journal of Automobile Engineering, 2012, 226(6): 767-778.
[9] Zhang Su-min, Sun Hao, Wang Yu. A trajectory planning algorithm for autonomous overtaking maneuvers[C]∥Instruments, Measurement, Electronics and Information Engineering, 2012:1308-1313.
[10] Zhang Su-min, Deng Wei-wen, Zhao Qing-rong, et al. Dynamic trajectory planning for vehicle autonomous driving[C]∥IEEE Conference on Systems, Man, and Cybernetics, 2013:4161-4166.
[11] 余至生.汽车理论[M].北京:机械工业出版社, 2008:144-148.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!