吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 761-768.doi: 10.13229/j.cnki.jdxbgxb201503012

• • 上一篇    下一篇

基于跟驰数据采集分析的各异性跟驰模型

敬明1, 2, 王昊3, 王文静1, 2   

  1. 1.交通运输部公路科学研究院,国家智能交通系统工程技术研究中心, 北京 100088;
    2.交通运输部公路科学研究院,智能交通技术交通行业重点实验室,北京 100088;
    3.东南大学 交通学院,南京 210096
  • 收稿日期:2013-09-02 出版日期:2015-05-01 发布日期:2015-05-01
  • 作者简介:敬明(1986-),男,博士研究生.研究方向:交通运输规划与管理.
  • 基金资助:
    交通运输部应用基础研究项目(2013319223210); 科研院所技术开发研究项目(2012EG224049); 国家自然科学基金项目(51008074)

Heterogeneous car following models based on data analysis

JING Ming1, 2, WANG Hao3, WANG Wen-jing1, 2   

  1. 1.National Center of ITS Engineering and Technology,Research Institute of Highway Ministry of Transport, Beijing 100088, China;
    2.Key Laboratory of Technology on Intelligent Transportation Systems, Research Institute of Highway Ministry of Transport,Beijing 100088, China;
    3.School of Transportation, Southeast University, Nanjing 210096, China
  • Received:2013-09-02 Online:2015-05-01 Published:2015-05-01

摘要: 基于模型参数的相关性提出了特征因子的概念,在此基础上提出了一种基于跟驰数据研究车辆及驾驶员特性的方法,方法包括:跟驰数据采集、数据处理和参数标定、参数相关性分析、特征因子计算、特征因子分布研究。当特征因子分布状况已知时,可以通过特征因子和模型参数的换算实现基于车辆和驾驶员特性的交通仿真。对在南京市采集的跟驰数据进行分析处理,研究了跟驰模型参数间的相互关系,以优化速度模型(OV)和智能驾驶模型(IDM)为例实现了基于跟驰数据的车辆和驾驶员特性的描述和分析。

关键词: 交通运输系统工程, 各异性跟驰模型, 相关性分析, 数值模拟

Abstract: Based on the model parameters the characterization factor is defined. Then according to the definition, a method is developed to analyze the vehicle characteristics using observed data. The method consists of five steps: named data collection, data processing and parameter calibration, parameter correlation analysis, characterization factor calculation, and characterization distribution study. Once the characterization factor distribution is known, traffic simulation based on vehicle characteristics can be conducted with conversion of characterization factor and model parameters. With Optimal Velocity Model (OVM) and Intelligent Driver Model (IDM), a study on vehicle characteristics is conducted using the data collected in Nanjing. A heterogeneous IDM model is proposed and used for simulation based on driver-vehicle characteristics.

Key words: engineering of communications and transportation system, heterogeneous car following model, correlation analysis, numerical simulation

中图分类号: 

  • U491
[1] Newell G F. A simplified car-following theory:a lower order model[J]. Transportation Research Part B,2002,36(3):195-205.
[2] Ahn S,Cassidy M J,Laval J. Verification of a simplified car-following theory[J]. Transportation Research Part B,2004,38(5):431-440.
[3] 贾洪飞,隽志才,王晓原,等. 利用因子分析选取车辆跟驰模型输入变量[J].公路交通科技,2004,21(1):81-84.
Jia Hong-fei,Juan Zhi-cai,Wang Xiao-yuan,et al. Factor analysis for choosing input variables of car-following model[J]. Journal of Highway and Transportation Research and Development,2004,21(1):81-84.
[4] 贾洪飞,隽志才,曹鹏. 跟驰过程中驾驶员认知结构模型的建立[J].公路交通科技,2005,22(11):130-132.
Jia Hong-fei,Juan Zhi-cai,Cao Peng. A cognition structure model for drivers' car-following behavior[J]. Journal of Highway and Transportation Research and Development, 2005,22(11):130-132.
[5] 王昊,王炜. 各异性FVD模型及数值模拟[J].哈尔滨工业大学学报,2010,42(1):138-142.
Wang Hao,Wang Wei .Heterogeneous FVD model and numerical simulation[J]. Journal of Harbin Institute of Technology,2010,42(1):138-142.
[6] 敬明,邓卫,刘志明,等. 基于车辆个体特征的IDM模型研究[J]. 交通信息与安全,2012,30(5):10-13.
Jing Ming,Deng Wei,Liu Zhi-ming,et al. IDM model based on individual features[J]. Journal of Transport Information and Safety,2012,30(5):10-13.
[7] 敬明,邓卫. 基于车辆个体行为的交通流跟驰模型研究[J]. 交通科技,2008(6):84-87.
Jing Ming, Deng Wei. Research on car following model that reflects individual differences[J]. Transportation Science & Technology, 2008(6):84-87.
[8] 吴超仲,马晓风,严新平. 考虑驾驶员反应能力的跟驰模型[J]. 武汉理工大学学报:交通科学与工程版,2007,31(4):630-632.
Wu Chao-zhong,Ma Xiao-feng, Yan Xin-ping. Car following model based on drivers'reaction time[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering),2007,31(4):630-632.
[9] Bando M,Hasebe K,Nakayama A,et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E,1995,51(2):1035-1042.
[10] Treiber M,Hennecke A,Helbing D. Congested traffic states in empirical observations and microscopic simulation[J]. Physical Review E,2000,62(2):1805-1828.
[11] Wang Hao,Wang Wei,Chen Jun . General Newell model and related second-order expressions[J]. Transportation Research Record,2011,2260:42-49.
[12] Herman R,Montroll E W. Traffic dynamics:studies in car following[J]. Operations Research,1958,6(2):165-184.
[13] 廖惠红,李丹,王昊,等. 跟驰模型中反应延迟时间项作用机制的数值模拟[J].交通信息与安全,2010,28(2):33-36.
Liao Hui-hong, Li Dan, Wang Hao, et al. Numerical simulation of the perception/reaction delay time in car-following model[J]. Journal of Transport Information and Safety,2010,28(2):33-36.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[5] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[6] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[7] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[8] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[9] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[10] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[11] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[12] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[13] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[14] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[15] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!