吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 864-871.doi: 10.13229/j.cnki.jdxbgxb201503026

• • 上一篇    下一篇

压印接头强度的有限元模型及理论计算方法

杨慧艳, 何晓聪, 周森   

  1. 昆明理工大学 机电工程学院, 昆明650500
  • 收稿日期:2013-08-23 出版日期:2015-05-01 发布日期:2015-05-01
  • 通讯作者: 何晓聪(1955-),男,教授,博士生导师.研究方向:新轻型薄板材料连接新技术.
  • 作者简介:杨慧艳(1989-),女,博士研究生.研究方向:汽车轻量化-薄板材料连接新技术.
  • 基金资助:
    国家自然科学基金项目(50965009)

Simulation and calculation methods for clinched joint strength

YANG Hui-yan, HE Xiao-cong, ZHOU Sen   

  1. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2013-08-23 Online:2015-05-01 Published:2015-05-01

摘要: 建立了压印接头拉剪强度模型并提出接头强度的理论计算方法。建立了压印连接成形的二维模型,模拟压印成型过程并分析金属流动规律,模拟结果与试验结果一致。由压印连接过程的模拟结果得到压印接头的三维模型,由此三维模型模拟接头的拉剪过程,得到接头的载荷-位移曲线和失效形式,模拟结果与试验结果一致,求解误差为3.4%。根据压印接头拉剪的两种失效形式(颈部断裂失效和上下板分离失效),提出了压印接头的理论计算公式。并由12种压印接头对计算公式进行验证,求解结果与试验结果吻合,最大强度误差为8.9%。

关键词: 工程力学, 压印连接, 接头拉剪强度, 计算公式, 数值模拟, 微观组织分析

Abstract: A finite element (FE) model and a theoretical calculation method for the tensile-shear strength of clinched joint were proposed. First, a 2D model for clinching process was established in ANSYS to simulate the performing process and analyze the metal flow law; the simulation results are in accord with the test results. Then, a 3D model for tensile-shear process was constructed from the results of the 2D model; the load-displacement curve and the failure mode were obtained. The simulation results are in good agreement with test results with an error of 3.4%. Finally, theoretical formulas for the calculation of the joint strength was proposed based on the two failure modes in tensile-shear tests, which are neck-fracture failure mode and button separation mode. The formulas were verified by the tests of twelve types of clinched joints. Results show that the calculation error of the joint strength is 8.9%.

Key words: engineering mechanics, clinching, tensile-shear strength, calculating formula, simulation, microscopic analysis

中图分类号: 

  • TG4
[1] 李勇. TOX板件冲压连接技术[J]. 机械工程师,2003(5):58-60.
Li Yong. TOX sheet metal stamping connection technology[J]. Mechanical Engineer,2003(5):58-60.
[2] Mori K, Abe Y, Kato T. Mechanism of superiority of fatigue strength for aluminium alloy sheets joined by mechanical clinching and self-pierce riveting[J]. Journal of Materials Processing Technology, 2012,212(9):1900-1905.
[3] He X. Recent development in finite element analysis of clinched joints[J]. International Journal of Advanced Manufacturing Technology,2010,48(5-8):607-612.
[4] He X. Coefficient of variation and its application to strength prediction of clinched joints[J]. Advanced Science Letters,2011,4(4-5):1757-1760.
[5] De Paula A A, Aguilar M T P, Pertence A E M, et al. Finite element simulations of the clinch joining of metallic sheets[J]. Journal of Materials Processing Technology,2007,182(1-3):352-357.
[6] Varis J P. The suitability for round clinching tools for high-strength structural steel[J]. Thin-Walled Structures,2002,40(3):225-238.
[7] Varis J P. The suitability of clinching as a joining method for high-strength structural steel[J]. Journal of Materials Processing Technology,2003,132(1-3):242-249.
[8] 周云郊,兰凤崇,黄信宏,等. 钢铝板材压力连接模具几何参数多目标优化[J]. 材料科学与工艺,2011,19(6):86-99.
Zhou Yun-jiao, Lan Feng-chong, Huang Xin-hong, et al. Multi-objective optimization of geometry of clinching tools for steel-aluminum blank sheets[J]. Materials Science and Technology,2011,19(6):86-99.
[9] 黄柳钧,何玉林. 铝板无铆钉自冲铆接质量及强度的试验研究[J]. 机械设计与制造, 2010(11):98-100.
Huang Liu-jun, He Yu-lin. An experimental research on quality and strength of aluminous joints by clinch joining technique[J]. Machinery Design & Manufacture,2010(11):98-100.
[10] 龙江启,兰凤崇,陈吉清.基于神经网络无铆钉自冲铆接接头力学性能预测[J]. 计算机集成制造系统,2009,15(8):1614-1630.
Long Jiang-qi, Lan Feng-chong, Chen Ji-qing. Neural network-based mechanical property predication in the mechanical clinching joints[J]. Computer Integrated Manufacturing Systems,2009,15(8):1614-1630.
[11] Lee C J,Kim J Y,Lee S K, et al. Design of mechanical clinching tools for joining of aluminium alloy sheets[J]. Materials and Design,2010,31(4):1854-1861.
[12] 曹乃光. 金属塑性加工原理[M]. 北京:冶金工业出版社,1982.
[13] 徐政坤. 冲压模具及设备[M]. 北京:机械工业出版社,2005.
[1] 尼颖升,孙启鑫,马晔,徐栋,刘超. 基于空间网格分析的多箱室波形钢腹板组合梁腹板剪力分配[J]. 吉林大学学报(工学版), 2018, 48(6): 1735-1746.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[4] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[5] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[6] 付文智, 刘晓东, 王洪波, 闫德俊, 刘晓莉, 李明哲, 董玉其, 曾振华, 刘桂彬. 关于1561铝合金曲面件的多点成形工艺[J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[7] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[8] 王宏朝, 单希壮, 杨志刚. 地面效应模拟对环境风洞中车辆冷却系统试验影响的数值模拟[J]. 吉林大学学报(工学版), 2017, 47(5): 1373-1378.
[9] 闫亚宾, 王晓媛, 万强. 纳米尺度界面低周疲劳破坏行为[J]. 吉林大学学报(工学版), 2017, 47(4): 1201-1206.
[10] 彭玮, 李国祥, 闫伟. 适用于发动机散热器的壁面函数改进[J]. 吉林大学学报(工学版), 2017, 47(3): 804-810.
[11] 寇淑清, 宋玮峰, 石舟. 36MnVS4连杆裂解加工模拟及缺陷分析[J]. 吉林大学学报(工学版), 2017, 47(3): 861-868.
[12] 谷诤巍, 吕萌萌, 张文学, 雷娇娇, 徐虹. 中国标准动车组前端三维蒙皮件冲压成形[J]. 吉林大学学报(工学版), 2017, 47(3): 869-875.
[13] 孟广伟, 冯昕宇, 周立明, 李锋. 基于降维算法的结构可靠性分析[J]. 吉林大学学报(工学版), 2017, 47(1): 174-179.
[14] 陈江义, 刘保元. 纤维断裂损伤对复合材料板中导波频散特性的影响[J]. 吉林大学学报(工学版), 2017, 47(1): 180-184.
[15] 张鹏, 寇淑清, 赵勇, 林宝君. 装配式凸轮轴三点式轴向滚花过程[J]. 吉林大学学报(工学版), 2016, 46(6): 1953-1960.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!