吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 50-56.doi: 10.13229/j.cnki.jdxbgxb201601008

• • 上一篇    下一篇

基于虚拟风洞的装载机动力舱热环境预测分析

张钦国1, 秦四成1, 杨立光2, 马润达1, 刘宇飞3, 李武1   

  1. 1.吉林大学 机械科学与工程学院,长春 130022;
    2.水利部长春机械研究所,长春 130012;
    3.吉林大学 汽车工程学院,长春 130022
  • 收稿日期:2014-08-29 出版日期:2016-01-30 发布日期:2016-01-30
  • 通讯作者: 秦四成(1962-),男,教授,博士生导师.研究方向:工程车辆节能控制.E-mail:qsc925@hotmail.com
  • 作者简介:张钦国(1986-),男,博士研究生.研究方向:车辆热管理.E-mail:zhangqg2006@126.com
  • 基金资助:
    国家自然科学基金项目(50775096); 国家科技支撑计划项目(2013BAF07B04)

Thermal environment prediction of loader engine cabin in a virtual wind tunnel

ZHANG Qin-guo1, QIN Si-cheng1, Yang Li-guang2, MA Run-da1, LIU Yu-fei3, LI Wu1   

  1. 1.College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China;
    2.Changchun Machinery Research Institute of Ministry of Water Resources, Changchun 130012,China;
    3.College of Automotive Engineering, Jilin University, Changchun 130022, China
  • Received:2014-08-29 Online:2016-01-30 Published:2016-01-30

摘要: 为了改善装载机动力舱热环境,提高散热器的换热性能,保证整车工作的稳定性,以轮式装载机为研究对象,按照实际尺寸建立三维计算模型,采用虚拟风洞和数值模拟相结合的研究方法,预测排气系统对动力舱热环境和散热器性能的影响,并比较了在两种排气系统结构下散热器的换热效率。仿真结果与试验结果比较吻合,证明了计算模型的有效性。计算结果表明:采用隔热排气系统能够明显降低动力舱内空气的温度,改善舱内热环境,液压油散热器换热性能提高9.0%,水散热器换热性能提高7.3%,传动油散热器换热性能提高6.8%。研究结果对装载机整车热管理技术提供了指导。

关键词: 车辆工程, 轮式装载机, 虚拟风洞, 数值分析, 整车热管理

Abstract: In order to improve the thermal environment of the loader engine cabin and the heat transfer performance of the radiators to ensure the stable vehicle performance, a 3-D physical model of the loader was built. Virtual wind tunnel and numerical simulation were used to predict the influence of the exhaust system on the cabin thermal environment and radiator performance. The heat transfer power of the radiators was compared under two kinds of exhaust system. Analysis results show reasonable agreement with experiment results, which proves the accuracy of the model. Simulation results show that using insulated exhaust system could significantly reduce the air temperature in the engine cabin. The thermal environment of the engine cabin was improved. The heat transfer performances of the hydraulic oil radiator, the water radiator and the transmission oil radiator ware increased by 9.0%, 7.3% and 6.8%, respectively. The results of this work may provide guidance for vehicle thermal management of the loader.

Key words: vehicle engineering, wheel loader, virtual wind tunnel, numerical analysis, vehicle thermal management

中图分类号: 

  • U415.52
[1] 秦四成,王雪莲,秦司南,等. 轮式装载机热源系统空气场特性分析[J]. 中国公路学报,2010,23(3):123-126.
Qin Si-cheng,Wang Xue-lian,Qin Si-nan,et al. Analysis of air field property in heat source of wheel loader[J]. China Journal of Highway and Transport,2010,23(3):123-126.
[2] Franchetta M, Bancroft T G, Suen K O. Fast transient simulation of vehicle underhood in heat soak[C]//SAE Paper, 2006-01-1606.
[3] 张毅,俞小莉,陆国栋,等. 装载机散热系统过热现象的研究[J]. 浙江大学学报,2006,40(7):1183-1186.
Zhang Yi,Yu Xiao-li,Lu Guo-dong,et al. Research of loader cooling system overheat problem[J]. Journal of Zhejiang University,2006,40(7):1183-1186.
[4] 张毅,俞小莉,陆国栋,等. 装载机散热器模块进出口位置匹配试验[J]. 农业机械学报,2007,38(1):41-44.
Zhang Yi,Yu Xiao-li,Lu Guo-dong,et al. Experimental study of inlet-outlet-tube position of heat exchanger module for loader[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007,38(1):41-44.
[5] 陆国栋,俞小莉,张毅. 装载机冷却组优化匹配的试验研究[J]. 内燃机工程,2005,24(4):47-50.
Lu Guo-dong,Yu Xiao-li,Zhang Yi. Experimental investigation of cooling set matching optimization for mechanical loaders[J]. Chinese Internal Combustion Engine Engineering,2005,24(4):47-50.
[6] 刘佳鑫. 工程机械散热模块传热性能研究[D]. 长春:吉林大学机械科学与工程学院,2013.
Liu Jia-xin. Research on heat transfer performance of heat-dissipation module for construction machinery[D]. Changchun: College of Mechanical Science and Engineering,Jilin University, 2013.
[7] 张坤,王玉璋,杨小玉. 应用CFD方法改善发动机舱散热性能[J]. 汽车工程,2011,33(4):314-317.
Zhang Kun, Wang Yu-zhang, Yang Xiao-yu. Improving underhood cooling performance by using CFD technique[J]. Automotive Engineering, 2011, 33(4):314-317.
[8] 胡兴军,李腾飞,王靖宇,等. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报:工学版,2013,43(3):595-600.
Hu Xing-jun,Li Teng-fei,Wang Jing-yu,et al. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. Journal of Jilin University(Engineering and Technology Edition),2013,43(3):595-600.
[9] 刘佳鑫,秦四成,孔维康,等. 虚拟风洞下车辆散热器模块传热性能数值仿真[J]. 吉林大学学报:工学版,2012,42(4):834-839.
Liu Jia-xin, Qin Si-cheng, Kong Wei-kang, et al. Numerical simulation analysis of heat transfer performance of vehicle radiator module in a virtual wind tunnel[J]. Journal of Jilin University(Engineering and Technology Edition),2012,42(4):834-839.
[10] 李高明,李明. ANSYS 13.0 流场分析技术及其应用[M]. 北京:机械工业出版社,2012.
[11] 徐振元. 工程车辆波纹翅片散热器特性分析与应用研究[D]. 长春:吉林大学机械科学与工程学院,2012:30-35.
Xu Zhen-yuan. Research on characteristics and application of wave fin radiator in engineering vehicle[D]. Changchun: College of Mechanical Science and Engineering, Jilin University, 2012:30-35.
[12] Batchelor G K. An Introduction to Fluid Dynamics[M]. Cambridge, England: Cambridge University Press, 1967.
[13] 王晶,张成春,张春艳,等.客车后舱门开口对发动机舱体散热的影响[J].农业机械学报,2012,43(9):31-36.
Wang Jing,Zhang Cheng-chun,Zhang Chun-yan,et al. Effect of back door opening of bus engine cabin on underhood heat dissipation[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(9):31-36.
[14] 姚仲鹏. 车辆冷却传热[M]. 北京: 北京理工大学出版社, 2001.
[15] 陶文铨. 数值传热学[M]. 2版.西安:西安交通大学出版社,2004.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 贾拓,赵丁选,崔玉鑫. 铰接式装载机倾翻预警方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1762-1769.
[7] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[8] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[9] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[10] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[11] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[12] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[13] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[14] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[15] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!