吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (1): 1-7.doi: 10.13229/j.cnki.jdxbgxb201701001

• 论文 •    下一篇

插电式混合动力汽车动力传动系参数优化

王庆年1, 段本明1, 王鹏宇1, 拱印生2, 朱庆林2   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春130022;
    2.启明信息技术股份有限公司 电子服务中心,长春130122
  • 收稿日期:2015-11-10 出版日期:2017-01-20 发布日期:2017-01-20
  • 通讯作者: 王鹏宇(1979-),男,副教授,博士.研究方向:节能与新能源汽车.E-mail:wangpy@jlu.edu.cn
  • 作者简介:王庆年(1952-),男,教授,博士生导师.研究方向:节能与新能源汽车.E-mail:wqn@jlu.edu.cn
  • 基金资助:

    “863”国家高技术研究发展计划项目(W65-BK-2012-0007).

Optimization of powertrain transmission parameters of plug-in hybrid electric vehicle

WANG Qing-nian1, DUAN Ben-ming1, WANG Peng-yu1, GONG Yin-sheng2, ZHU Qing-lin2   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China;
    2.Electric Service Center,Qiming Information Technology Co.,Ltd.,Changchun 130122,China
  • Received:2015-11-10 Online:2017-01-20 Published:2017-01-20

摘要:

在既定的动力总成功率参数及整车控制策略前提下,为充分挖掘插电式混合动力汽车(PHEV)节能潜力,以满足整车性能为约束条件,以百公里行驶成本为响应,利用最优拉丁超立方设计方法探索了其传动系统所有因子的空间响应特性,辨别了系统关键设计因子,给出了最优局部区域。基于此,建立了系统径向基(RBF)神经网络模型,并充分利用非线性二次规划算法较强的局部优化能力,在上述局部区域内得到了传动系参数全局最优组合以及对应的百公里行驶成本。结果显示:基于近似模型的优化方法精度较高,误差为1.06%;百公里行驶成本降低了9.72%。

关键词: 车辆工程, 插电式混合动力汽车, 百公里行驶成本, 最优拉丁超立方设计, 径向基神经网络模型, 非线性二次规划算法

Abstract:

In order to fully explore the energy saving potential of plug-in hybrid electric vehicle with determined power parameters of powertrain and control strategy, and in meeting the vehicle performance constraints, the running cost of 100 km was proposed as the response. The optimal Latin hypercube design was used to investigate the spatial response characteristics of all factors of the transmission system, based on which the key design factors of the system were identified and the optimal local area was confirmed. Combined with making full use of the advantages of strong local optimization ability of nonlinear quadratic programming algorithm, the Radial Basis (RBF) neural network model was established to obtain global optimal solution and the best response of the optimization problem. The model error is 1.06% which shows that the optimization method based on approximation model is of high accuracy. The running cost of 100 km is reduced by 9.72%.

Key words: vehicle engineering, plug-in hybrid electric vehicle(PHEV), running costs of 100 km, optimal latin hypercube design, RBF neural network, nonlinear quadratic programming algorithm

中图分类号: 

  • U469.7
[1] Golbuff S. Optimization of a plug-in hybrid electric vehicle[D]. Atlanta: Georgia Institute of Technology,2006.
[2] Li L,Zhang Y H, Yang C,et al. Hybrid genetic algorithm-based optimization of powertrain and control parameters of plug-in hybrid electric bus[J]. Journal of the Fanklin Institute-Engineering and Applied Mathematics,2014,352(3):776-801.
[3] Sun Y,Chen Z, Yan B J,et al. A learning method for energy optimization of the plug-in hybrid electric bus[J]. Science China Technological Sciences,2015,58(7): 1242-1249.
[4] 张抗抗,徐梁飞,华剑锋,等. 基于多目标优化的纯电动车动力系统参数匹配方法[J]. 汽车工程,2015,37(7):757-765.
Zhang Kang-kang,Xu Liang-fei,Hua Jian-feng,et al. A parameter matching method for the power train of battery electric vehicle based on multi-objective optimization[J]. Automotive Engineering, 2015,37(7):757-765.
[5] 尹安东,赵韩,杨亚娟,等. 多目标遗传算法的混合动力传动系参数优化[J]. 中国机械工程. 2013,24(4):552-556.
Yin An-dong,Zhao Han,Yang Ya-juan,et al. Parametric optimization of hybrid powertrain based on multi-objective genetic algorithm[J]. China Mechanical Engineering,2013,24(4): 552-556.
[6] 王庆年,韩彪,王鹏宇,等. 基于成本优化的插电式混合动力参数匹配[J]. 吉林大学学报:工学版, 2016, 46(2): 340-347.
Wang Qing-nian,Han Biao,Wang Peng-yu,et al. Parameter matching for plug-in hybrid electric vehicle based on the cost optimization[J]. Journal of Jilin University Engineering and Technology Edition, 2016, 46(2): 340-347.
[7] 吴为理,兰凤崇,陈吉清,等. Plug-in混合动力汽车动力系统参数设计成本效益分析[J]. 机械科学与技术,2013,32(3) :383-387.
Wu Wei-li,Lan Feng-chong,Chen Ji-qing,et al. Cost-benefit analysis of parameter design of powertrain for plug-in hybrid electric vehicle[J]. Mechanical Science and Technology for Aerospace Engineering,2013,32(3):383-387.
[8] 赖宇阳. Isight参数优化理论与实例详解[M]. 北京:北京航空航天大学出版社,2012.
[9] Chang W Y. Estimation of the state of charge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA[J]. International Journal of Electrical Power & Energy Systems,2013,53:603-611.
[10] 张庆洪. 基于径向基神经网络的汽车油耗软测量及监测系统研究[D].长沙:湖南大学机械与运载工程学院,2014.
Zhang Qing-hong. Soft measurement and monitoring system of vehicle fuel consumption based on the RBF neural network[D]. Changsha: College of Mechanical and Vehicle Engineering,Hunan University,2014.
[11] 张万兴. 电动汽车动力电池剩余容量和续驶里程预测研究[D]. 合肥:合肥工业大学汽车与交通工程学院,2012.
Zhang Wan-xing. Forecasting for battery remaining capacity and driving ranges of electric vehicle[D]. Hefei: College of Automotive and Traffic Engineering, Hefei University of Technology, 2012.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!