吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (1): 8-14.doi: 10.13229/j.cnki.jdxbgxb201701002

• 论文 • 上一篇    下一篇

基于动态规划的复合电源能量管理优化

宋传学, 周放, 肖峰   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2015-12-20 出版日期:2017-01-20 发布日期:2017-01-20
  • 作者简介:宋传学(1959-),男,教授,博士生导师.研究方向:汽车系统动力学.E-mail:songchx@126.com
  • 基金资助:
    吉林省科技厅重点科技攻关项目(20150204017GX).

Energy management optimization of hybrid energy storage system (HESS) based on dynamic programming

SONG Chuan-xue, ZHOU Fang, XIAO Feng   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2015-12-20 Online:2017-01-20 Published:2017-01-20

摘要: 以复合电源能耗和电池组容量损失最小化为目标建立多目标优化模型,将电池组容量损失视为状态变量,将多目标优化问题转化为单目标多状态形式,并应用动态规划进行求解,得到Pareto解集。分析优化结果,提取了数条功率分配规律,并基于此提出基于规则的能量管理策略。对控制策略进行仿真验证,结果表明:与动态规划结果相比,复合电源能耗增加1%,电池容量损失增加0.4%,达到了与动态规划相近的效果,在线能量管理策略同时在两个目标上近似最优。

关键词: 车辆工程, 复合电源, 能量管理, 多目标动态规划, 容量损失

Abstract: A multi-objective optimization method aiming at minimizing HESS energy consumption and battery capacity loss is proposed. The battery loss is considered as a state variable, then, the multi-objective optimization problem is transformed into single objective with two state variables. The optimization problem is solved using dynamic programming algorithm, thus obtaining the Pareto-optimal sets. The optimization result is analyzed and a series of control rules are acquired, then, based on these rules, a rule-based power slitting strategy is proposed. Finally, the proposed strategy is simulated under Urban Dynamometer Driving Schedule condition. Results show that, compared with dynamic programming results, HESS energy consumption increases by 1%, and battery capacity loss increases by 0.4%, similar effect with dynamic programming is achieved. This proposed online ene4gy management is sub-optimal on both targets.

Key words: vehicle engineering, hybrid energy storage system, energy management, multi-objective dynamic programming, capacity losses

中图分类号: 

  • U461.8
[1] Jossen A. Fundamentals of battery dynamics[J]. Journal of Power Sources,2006,154(2):530-538.
[2] 王斌,徐俊,曹秉刚,等. 采用模拟退火算法的电动汽车能量管理系统优化[J]. 西安交通大学学报,2015,49(8):90-96.
Wang Bin,Xu Jun,Cao Bing-gang, et al. Optimization of energy management system with simulated annealing approach for hybrid power source in electric vehicles[J]. Journal of Xi'an Jiaotong University,2015,49(8):90-96.
[3] Song Z Y,Hofmann H,Li J Q,et al. Energy management strategies comparison for electric vehicles with hybrid energy storage system[J]. Applied Energy,2014,134:321-331.
[4] Song Z Y,Li J Q,Han X B,et al. Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles[J]. Applied Energy,2014,135:212-224.
[5] Miller P M,Prummer M,Schnewly A. Power electronic interface for an ultracapacitor as the power buffer in a hybrid electric energy storage system[DB/OL]. [2015-10-11].http:∥www.maxwell.com/images/documents/whitepaper_powerelectronicsinterface.pdf.
[6] Wang J,Liu P,Hicks-Garner J,et al. Cycle-life model for graphite-LiFePO4 cells[J]. Journal of Power Sources, 2011,196(8):3942-3948.
[7] Song Z Y,Hofman H,Li J Q,et al. Optimization for a hybrid energy storage system in electric vehicles using dynamic programming approach[J]. Applied Energy,2015,139:151-162.
[8] 邹渊. 车辆驱动系统建模与优化[M]. 北京:机械工业出版社,2015.
[9] 钱立军,邱利宏,辛付龙,等. 插电式四驱混合动力汽车能量管理控制策略及其优化[J]. 农业工程学报,2015,31(13):68-76.
Qian Li-jun,Qiu Li-hong,Xin Fu-long,et al. Energy management control strategy and optimization for plug-in 4WD hybrid electric vehicle[J]. Transactions of the CSAE, 2015, 31(13):68-76.
[10] 于远彬. 车载复合电源设计理论与控制策略研究[D]. 长春:吉林大学汽车工程学院,2008.
Yu Yuan-bin. Study on the design theory and control method issues of synergic electric power system on bus[D]. Changchun:College of Automotive Engineering,Jilin University,2008.
[11] 申彩英. 串联混合动力汽车能量优化管理策略研究[D].天津:天津大学电气与自动化工程学院,2010.
Shen Cai-ying. Study on energy optimal management for series hybrid electric vehicles[D]. Tianjin:College of Electrical Engineering & Automation,Tianjin University,2010.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!