吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (1): 36-43.doi: 10.13229/j.cnki.jdxbgxb20180966

• 车辆工程·机械工程 • 上一篇    下一篇

基于极小值原理的燃料电池客车能量管理策略

王哲1,2(),谢怡1,2,臧鹏飞1,2,王耀1,2   

  1. 1. 同济大学 汽车学院,上海 201804
    2. 同济大学 新能源汽车工程中心,上海 201804
  • 收稿日期:2018-09-21 出版日期:2020-01-01 发布日期:2020-02-06
  • 作者简介:王哲(1963?),男,教授,博士生导师. 研究方向:新能源汽车动力系统. E-mail: wangzhe@tongji.edu.cn
  • 基金资助:
    上海市科学技术委员会项目(15DZ1201500)

Energy management strategy of fuel cell bus based on Pontryagin′s minimum principle

Zhe WANG1,2(),Yi XIE1,2,Peng-fei ZANG1,2,Yao WANG1,2   

  1. 1. School of Automotive Studies, Tongji University, Shanghai 201804, China
    2. Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China
  • Received:2018-09-21 Online:2020-01-01 Published:2020-02-06

摘要:

针对燃料电池客车动力系统,以氢耗最低为目标函数,以燃料电池输出功率为控制变量,并考虑燃料电池耐久性对控制变量进行约束,基于Pontryagin极小值原理设计能量管理策略。针对Pontryagin极小值原理仅适用于离线计算的缺点进行改进,设计了能适应不同工况的在线能量管理策略,并建立了燃料电池客车整车仿真模型。仿真结果表明:该能量管理策略在不同工况下具有较好的适应性,不同工况下燃料经济性和耐久性均优于传统开关模式能量管理策略。

关键词: 车辆工程, 燃料电池客车, 在线能量管理策略, Pontryagin极小值原理, 燃料经济性, 燃料电池耐久性

Abstract:

An energy management strategy for fuel cell bus is designed based on the Pontryagin’s minimum principle, in which the fuel cell power is set as the control variable, minimal fuel consumption is taken as the objective function, and the durability of fuel cell is considered as the constraint. An on-line energy management strategy is designed with improving the Pontryagin’s minimum principle in order to adapting to different operating conditions. A fuel cell bus simulation model is built. The simulation results show that the energy management strategy can adapt to different operating conditions well, and it is better than the traditional on/off energy management strategy in terms of fuel economy and fuel cell durability.

Key words: vehicle engineering, fuel cell bus, on-line energy management strategy, Pontryagin′s minimum principle, fuel economy, durability of fuel cell

中图分类号: 

  • U461.8

图1

燃料电池动力系统结构"

图2

燃料电池功率?效率曲线"

图3

Rint等效电路"

图4

极小值原理求解过程"

图5

λ(0)与|?SOC|的关系"

图6

燃料电池客车前向仿真模型示意图"

表1

动力系统参数"

参数数值参数数值
整车整备质量/kg14 000主减速比7.72
燃料电池额定功率/kW60风阻系数0.65
燃料电池怠速功率/kW3.3迎风面积/m27.00
电机峰值功率/kW220车轮半径/m0.478
电机最高转速/(r·min-1)3 700滚阻系数0.015
电机最大转矩/(N·m)2 100电池容量/(A?h)120
电池峰值功率/kW187.2电池电压/V520

图7

典型城市工况仿真结果"

图8

上海城市工况仿真结果"

图9

纽伦堡公交工况仿真结果"

表2

典型城市工况仿真结果"

统计结果开关模式极小值原理离线最优策略
|?SOC|0.0050.0040.000 5
大幅变载时间/s7.160.660.79
燃料电池功率变化率最大值/(kW?s-1)285.495.005.08
怠速时间/s372.580.90.9
启停次数500
燃料电池平均工作效率/%44.4653.0553.05
动力电池平均工作效率/%97.7798.3298.28

表3

上海城市工况仿真结果"

统计结果开关模式极小值原理离线最优策略
|?SOC|0.0030.0080.000 7
大幅变载时间/s5.192.512.83
燃料电池功率变化率最大值/(kW?s-1)285.495.805.80
怠速时间/s289.010.90.9
启停次数300
燃料电池平均工作效率/%45.1652.7452.95
动力电池平均工作效率/%97.6198.1098.10

表4

纽伦堡公交工况仿真结果"

统计结果开关模式极小值原理离线最优策略
|?SOC|0.00050.00030.00002
大幅变载时间/s4.4127.3722.16
燃料电池功率变化率最大值/(kW?s-1)285.495.805.80
怠速时间/s348.740.90.9
启停次数200
燃料电池平均工作效率/%43.4352.9753.03
动力电池平均工作效率/%97.1197.5297.54

图10

终止SOC修正"

图11

不同策略下的经济性"

1 衣宝廉, 侯明. 车用燃料电池耐久性的解决策略[J]. 汽车安全与节能学报, 2011, 2(2): 91-100.
Yi Bao-lian, Hou Ming. Solutions for the durability of fuel cells in vehicle applications[J]. Journal of Automotive Safety and Energy, 2011, 2(2): 91-100.
2 张来云. 增程式燃料电池汽车动力系统匹配及能量管理策略研究[D]. 上海:华东理工大学机械与动力工程学院, 2016.
Zhang Lai-yun. The power system matching and energy management strategy research of fuel cell range extender electric vehicle[D]. Shanghai: College of Mechanical and Power Engineering,East China University of Science and Technology, 2016.
3 谢星, 周苏, 王廷宏, 等. 基于Cruise/Simulink的车用燃料电池/蓄电池混合动力的能量管理策略仿真[J]. 汽车工程, 2010, 32(5): 373-378.
Xie Xing, Zhou Su, Wang Ting-hong, et, al. A Simulation on energy management strategy for the power system of a fuel cell/battery HEV based on Cruise/Simulink[J]. Automotive Engineering, 2010, 32(5): 373-378.
4 李熙, 谢勇波, 宋超,等. 基于T-S模糊控制的燃料电池客车能量管理策略及仿真分析[J]. 客车技术与研究, 2017, 39(4): 5-8, 39.
Li Xi, Xie Yong-bo, Song Chao, et al. Management strategy and simulation analysis on fuel cell bus energy based on T-S fuzzy control[J]. Bus & Coach Technology and Research, 2017, 39(4): 5-8, 39.
5 Ahn H S, Lee N S. Power distribution control law for FCHEV-a fuzzy logic-based approach[C]∥International Conference on Control and Automation, Budapest, Hungary, 2005.
6 徐陈锋. 基于自适应模糊策略的燃料电池车混合动力系统控制[D]. 杭州:浙江大学控制科学与工程学院, 2017.Xu Chen-feng. Adaptive fuzzy control for power management of fuel-cell-battery hybrid vehicles[D]. Hangzhou:College of Control Science and Engineering, Zhejiang University, 2017.
7 Fletcher T, Thring R, Watkinson M. An energy management strategy to concurrently optimise fuel consumption & PEM fuel cell lifetime in a hybrid vehicle[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21503-21515.
8 张炳力, 代康伟, 赵韩, 等. 基于随机动态规划的燃料电池城市客车能量管理策略优化[J]. 系统仿真学报, 2008, 20(17): 4664-4667.
Zhang Bing-li, Dai Kang-wei, Zhao Han, et al. Optimized energy management strategy for fuel cell city bus based on stochastic dynamic programming[J]. Journal of System Simulation, 2008, 20(17): 4664-4667.
9 Zheng C H, Xu G Q, Park Y I, et al. Prolonging fuel cell stack lifetime based on Pontryagin's minimum principle in fuel cell hybrid vehicles and its economic influence evaluation[J]. Journal of Power Sources, 2014, 248: 533-544.
10 Chen H, Pei P, Song M. Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells[J]. Applied Energy, 2015, 142: 154-163.
11 Pei P, Chang Q, Tang T. A quick evaluating method for automotive fuel cell lifetime[J]. International Journal of Hydrogen Energy, 2008, 33(14): 3829-3836.
12 Pei P, Yuan X, Li P, et al. Lifetime evaluating and the effects of operation conditions on automotive fuel cells[J]. Chinese Journal of Mechanical Engineering, 2010, 23(1): 66-71.
13 Pei P, Chen H. Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: a review[J]. Applied Energy, 2014, 125: 60-75.
[1] 马芳武,梁鸿宇,赵颖,杨猛,蒲永锋. 内凹三角形负泊松比结构耐撞性多目标优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 29-35.
[2] 郭孔辉,黄世庆,吴海东. 适用于高频激励的面内轮胎动态模型[J]. 吉林大学学报(工学版), 2020, 50(1): 19-28.
[3] 陈鑫,阮新建,李铭,王宁,王佳宁,潘凯旋. 基于大涡模拟的离散格式改进方法及应用[J]. 吉林大学学报(工学版), 2019, 49(6): 1756-1763.
[4] 马芳武,倪利伟,吴量,聂家弘,徐广健. 轮腿式全地形移动机器人位姿闭环控制[J]. 吉林大学学报(工学版), 2019, 49(6): 1745-1755.
[5] 靳立强, 田端洋, 田浩, 刘蒙蒙. 汽车电子稳定系统制动增力辅助技术[J]. 吉林大学学报(工学版), 2019, 49(6): 1764-1776.
[6] 王杨,宋占帅,郭孔辉,庄晔. 转动惯量试验台的惯性参数测量[J]. 吉林大学学报(工学版), 2019, 49(6): 1795-1801.
[7] 庄蔚敏,刘洋,王鹏跃,施宏达,徐纪栓. 钢铝异质自冲铆接头剥离失效仿真[J]. 吉林大学学报(工学版), 2019, 49(6): 1826-1835.
[8] 李杰, 郭文翠, 赵旗, 谷盛丰. 基于车辆响应的路面不平度识别方法[J]. 吉林大学学报(工学版), 2019, 49(6): 1810-1817.
[9] 陈百超,邹猛,党兆龙,黄晗,贾阳,石睿杨,李建桥. CE-3月球车筛网轮月面沉陷行为试验[J]. 吉林大学学报(工学版), 2019, 49(6): 1836-1843.
[10] 何仁,涂琨. 基于温度补偿气隙宽度的电磁制动器[J]. 吉林大学学报(工学版), 2019, 49(6): 1777-1785.
[11] 刘巧斌,史文库,陈志勇,骆联盟,苏志勇,黄开军. 混合可靠性模型参数的核密度和引力搜索估计[J]. 吉林大学学报(工学版), 2019, 49(6): 1818-1825.
[12] 管欣,金号,段春光,卢萍萍. 汽车行驶道路侧向坡度估计[J]. 吉林大学学报(工学版), 2019, 49(6): 1802-1809.
[13] 鄢挺,杨林,陈亮. AMT换挡执行机构自适应智能控制策略[J]. 吉林大学学报(工学版), 2019, 49(5): 1441-1450.
[14] 马芳武,韩露,周阳,王世英,蒲永锋. 采用聚乳酸复合材料的汽车零件多材料优化设计[J]. 吉林大学学报(工学版), 2019, 49(5): 1385-1391.
[15] 张博,张建伟,郭孔辉,丁海涛,褚洪庆. 路感模拟用永磁同步电机电流控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1405-1413.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!