吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (1): 91-99.doi: 10.13229/j.cnki.jdxbgxb20180969

• 材料科学与工程 • 上一篇    下一篇

Cr8合金钢热变形行为及位错密度演变规律

陈学文(),王继业,杨喜晴,皇涛,宋克兴   

  1. 河南科技大学 材料科学与工程学院,河南 洛阳 471023
  • 收稿日期:2018-09-21 出版日期:2020-01-01 发布日期:2020-02-06
  • 作者简介:陈学文(1970?),男,教授,博士. 研究方向:塑性成形及材料微观组织数值模拟.E-mail: chenxwdavid@163.com
  • 基金资助:
    国家自然科学基金项目(51575162);河南省自然科学基金项目(162300410085)

Hot deformation behavior and dislocation density evolution regularity of Cr8 alloy

Xue-wen CHEN(),Ji-ye WANG,Xi-qing YANG,Tao HUANG,Ke-xing SONG   

  1. School of Materials Science and Engineering,Henan University of Science and Technology,Luoyang 471023,China
  • Received:2018-09-21 Online:2020-01-01 Published:2020-02-06

摘要:

利用Gleeble-1500D热模拟试验机对Cr8合金钢在变形温度为900~1200 ℃、应变速率为0.005~5 s-1条件下进行热压缩试验,并对热变形后的试样进行X射线衍射试验,研究了Cr8合金钢的热变形行为及位错密度演变规律。基于试验得到的数据,建立了考虑位错密度演变及包含多参数的两段式本构模型。结果表明:在低应变速率下,Cr8合金钢真应力-真应变曲线具有典型的动态再结晶特征;Cr8合金钢热变形激活能Q act为423.41 kJ/mol,本构模型的计算值与试验值数据吻合较好;在试验条件下,Cr8合金钢的总位错密度均达到1014 cm-2以上,总位错密度随应变速率增加、变形温度减小而增加。

关键词: 金属材料, Cr8合金钢, 热变形, 本构模型, 位错密度

Abstract:

Hot compression tests on Cr8 alloy were carried out on Gleeble-1500D thermal simulation test machine in the deformation temperature range from 900 ℃ to 1200℃ and strain rate range from 0.005 s-1 to 5 s-1.X-ray diffraction tests of the samples after hot deformation were carried out, and the hot deformation behavior and dislocation density evolution of Cr8 alloy were investigated.Based on the data of experiment, a two-stage constitutive model containing multiple parameters was established in consideration of dislocation density evolution.The results show that the true stress-true strain curves of Cr8 alloy show the typical characteristics of dynamic recrystallization under low strain rate.The hot deformation activation energy of Cr8 alloy is 423.41 kJ/mol, and the calculated values of the constitutive model agree well with the experimental values.Under the experimental conditions,the total dislocation density of Cr8 alloy reached above 1014 cm-2, and the total dislocation density increased with increasing strain rate and decreasing deformation temperature.

Key words: metallic material, Cr8 alloy, hot deformation, constitutive model, dislocation density

中图分类号: 

  • TG142.33

图1

Cr8合金钢在不同温度和不同应变速率下的真应力?真应变曲线"

图2

Cr8合金钢不同条件下峰值应力拟合"

图3

Cr8合金钢本构模型中参数间关系曲线"

图4

Cr8合金钢在不同条件下流变应力计算值与试验值比较"

图5

Cr8合金钢在不同条件下的显微组织"

图6

Cr8合金钢不同变形条件下的XRD衍射图谱"

图7

Cr8合金钢不同变形条件下的位错密度柱状图"

1 孙秀华, 汝亚彬, 刘宝石 . 新型冷作模具钢Cr8的开发[J].机械工程材料, 2008, 32(增刊1): 42-43.
Sun Xiu-hua , Ru Ya-bin , Liu Bao-shi . Development of Cr8 new-type cold work die steel[J]. Materials for Mechanical Engineering, 2008, 32(Sup.1): 42-43.
2 常旭东 . Cr8钢工作辊淬火过程数值模拟与工艺优化[D].秦皇岛:燕山大学机械工程学院, 2016.
Chang Xu-dong . Numerical simulation and process optimization of the Cr8 steel working roll quenching process[D]. Qinhuangdao: Shool of Mechnology Engineering, Yanshan University, 2016.
3 Chi H X , Ma D S , Yong Q L , et al . Effect of cryogenic treatment on properties of Cr8-type cold work die steel[J]. Journal of Iron and Steel Research (International), 2010, 17(6): 43-46, 59.
4 Li C H , Wu X C , Xie C ,et al . Investigation on wear resistance of Cr8 tool steels[J]. Tribology, 2013, 33(1):36-43.
5 Wang G , Wang D R , Liu L G ,et al . Austenite grain growth behavior of Cr8 steel[J]. Transactions of Materials & Heat Treatment,2014,35(2):94-99.
6 张岩, 赵爱民, 何建国, 等 . 热处理工艺对Cr8钢组织与性能的影响[J]. 金属热处理, 2016, 41(1): 79-84.
Zhang Yan , Zhao Ai-min , He Jian-guo , et al . Effect of heat treatment on microstructure and properties of Cr8 steel[J]. Heat Treatment of Metals, 2016, 41(1): 79-84.
7 黄顶俊, 杨弋涛 . Cr8型刃具钢热处理工艺优化[J]. 金属热处理, 2016, 41(3): 43-48.
Huang Ding-jun , Yang Yi-tao . Heat treatment process optimization of Cr8 cutting-tool steel[J]. Heat Treatment of Metals, 2016, 41(3): 43-48.
8 王葛, 刘智超, 常旭东, 等 . Cr8钢轧辊最终热处理过程数值模拟与实验研究[J]. 材料热处理学报, 2016, 37(6): 241-248.
Wang Ge , Liu Zhi-chao , Chang Xu-dong , et al . Numerical simulation and experimental research on final heat treatment process of a Cr8 steel roll[J]. Transactions of Materials and Heat Treatment, 2016, 37(6): 241-248.
9 Ferdowsi M R G , Nakhaie D , Benhangi P H , et al . Modeling the high temperature flow behavior and dynamic recrystallization kinetics of a medium carbon microalloyed steel[J]. Journal of Materials Engineering and Performance, 2014, 23(3): 1077-1087.
10 Zhang D , Liu Y Z , Zhou L Y , et al . Dynamic recrystallization behavior of GCr15SiMn bearing steel during hot deformation[J]. Journal of Iron and Steel Research (International), 2014, 21(11): 1042-1048.
11 Pu E X , Feng H , Liu M , et al . Constitutive modeling for flow behaviors of superaustenitic stainless steel S32654 during hot deformation[J]. Journal of Iron and Steel Research (International), 2016, 23(2): 178-184.
12 刘利萍, 刘勇兵, 姬连峰, 等 . 原位颗粒增强钛基复合材料高温流变行为[J]. 吉林大学学报:工学版, 2016, 46(4): 1197-1201.
Liu Li-ping , Liu Yong-bing , Ji Lian-feng ,et al . Flow stress behavior of in situ particulate reinforced titanium matrix composite at elevated temperature[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(4): 1197-1201.
13 Laasraoui A , Jonas J J . Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical and Materials Transactions A, 1991, 22(7): 1545-1558.
14 何运斌, 潘清林, 覃银江, 等 . ZK60镁合金热变形过程中的动态再结晶动力学[J]. 中国有色金属学报, 2011, 21(6): 1205-1213.
He Yun-bin , Pan Qing-lin , Qin Yin-jiang , et al . The dynamic recrystallization kinetics of ZK60 magnesium alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(6): 1205-1213.
15 陈飞 . 热锻非连续变形过程微观组织演变的元胞自动机模拟[D]. 上海:上海交通大学材料科学与工程学院, 2012.
Chen Fei . Simulation of microstructure evolution during discontinuous hot forging processes using cellular automaton method[D]. Shanghai: College of Materials and Science Engineering, Shanghai Jiaotong University, 2012.
16 齐珂 . 核电用钢316LN动态再结晶行为实验研究与数值模拟[D]. 上海:上海交通大学材料科学与工程学院, 2014.
Qi Ke . Experimental and numerical study on dynamic recrystallization of 316LN nuclear power steel[D]. Shanghai: College of Materials and Science Engineering, Shanghai Jiaotong University, 2014.
17 Dini G , Ueji R , Najafizadeh A , et al . Flow stress analysis of TWIP steel via the XRD measurement of dislocation density[J]. Materials Science & Engineering A, 2010, 527(10/11): 2759-2763.
18 闻瑶 . TA15钛合金形变过程的微观机理研究及其介观晶体塑性有限元模拟[D]. 合肥:合肥工业大学材料科学与工程学院, 2015.
Wen Yao . Microscopic mechanism and crystal plasticity finite element simulation of TA15 titanium alloy at deformation process[D]. Hefei:College of Materials Science and Engineering, Hefei University of Technology, 2015.
19 Mathis K , Farkas G , Garces G , et al . Evolution of dislocation density during compression of a Mg-Zn-Y alloy with long period stacking ordered structure[J]. Materials Letters, 2017, 190: 86-89.
20 余启航, 蒋显全, 佘欣未, 等 . 5182铸锭高温压缩流变行为与微观组织演变[J]. 西南大学学报:自然科学版, 2018, 40(1): 172-180.
Yu Qi-hang , Jiang Xian-quan , She Xin-wei , et al . High temperature rheologic behavior and microstructure evolution of 5182 alloy flat ingot[J]. Journal of Southwest University (Natural Science), 2018, 40(1): 172-180.
21 Ding R , Guo Z X . Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J]. Acta Materialia, 2001, 49(16): 3163-3175.
22 Laasraoui A , Jonas J J . Recrystallization of austenite after deformation at high temperatures and strain rates-analysis and modeling[J]. Metallurgical transactions A, 1991, 22(1): 151-160.
23 Sellars C M , Whiteman J A . Recrystallization and grain growth in hot rolling[J]. Metal Science, 1979, 13(3/4): 187-194.
24 陈学文, 王继业, 皇涛, 等 . 基于L-J位错密度模型模拟Cr8合金钢动态再结晶行为[J]. 钢铁, 2018, 53(7): 74-79.
Chen Xue-wen , Wang Ji-ye , Huang Tao , et al . Dynamic recrystallization behavior simulation for Cr8 alloy based on modified Laasraoui-Jonas dislocation density model[J]. Iron and Steel, 2018, 53(7): 74-79.
25 Gay P , Hirsch P B , Kelly A . The estimation of dislocation densities in metals from X-ray data[J]. Acta Metallurgica, 1953, 1(3): 315-319.
[1] 王金国,任帅,闫瑞芳,黄恺,王志强. TiC颗粒对铸态球墨铸铁组织和力学性能的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 2010-2018.
[2] 叶辉,朱艳荣,蒲永锋. 纤维增强复合材料应变率效应的数值仿真[J]. 吉林大学学报(工学版), 2019, 49(5): 1622-1629.
[3] 徐戊矫,刘承尚,鲁鑫垚. 喷丸处理后6061铝合金工件表面粗糙度的模拟计算及预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1280-1287.
[4] 李于朋,孙大千,宫文彪. 6082⁃T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报(工学版), 2019, 49(3): 836-841.
[5] 关庆丰,张福涛,彭韬,吕鹏,李姚君,许亮,丁佐军. 含硼、钴9%Cr耐热钢的热变形行为[J]. 吉林大学学报(工学版), 2018, 48(6): 1799-1805.
[6] 关庆丰, 董书恒, 郑欢欢, 李晨, 张从林, 吕鹏. 强流脉冲电子束作用下45#钢表面Cr合金化[J]. 吉林大学学报(工学版), 2018, 48(4): 1161-1168.
[7] 赵宇光, 杨雪慧, 徐晓峰, 张阳阳, 宁玉恒. Al-10Sr变质剂状态、变质温度及变质时间对ZL114A合金组织的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[8] 汤华国, 马贤锋, 赵伟, 刘建伟, 赵振业. 高性能金属铝的制备、微观结构及其热稳定性[J]. 吉林大学学报(工学版), 2017, 47(5): 1542-1547.
[9] 关庆丰, 张远望, 孙潇, 张超仁, 吕鹏, 张从林. 强流脉冲电子束作用下铝钨合金的表面合金化[J]. 吉林大学学报(工学版), 2017, 47(4): 1171-1178.
[10] 杨晓红, 杭文先, 秦绍刚, 刘勇兵, 刘利萍. H13钢激光熔覆钴基复合涂层的组织及耐磨性[J]. 吉林大学学报(工学版), 2017, 47(3): 891-899.
[11] 关庆丰, 黄尉, 李怀福, 龚晓花, 张从林, 吕鹏. 强流脉冲电子束诱发的Cu-C扩散合金化[J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[12] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[13] 张学广, 刘纯国, 郑愿, 江仲海, 李湘吉. 基于延性损伤和剪切损伤的铝合金成形极限预测[J]. 吉林大学学报(工学版), 2016, 46(5): 1558-1566.
[14] 李春玲, 樊丁, 王斌, 余淑荣. 5A06铝合金/镀锌钢预置涂粉对接激光熔钎焊组织与性能[J]. 吉林大学学报(工学版), 2016, 46(2): 516-521.
[15] 张家陶, 赵宇光, 谭娟. 初始组织对电脉冲处理逆变奥氏体晶粒细化效果的影响[J]. 吉林大学学报(工学版), 2016, 46(1): 193-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!