吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (2): 464-471.doi: 10.13229/j.cnki.jdxbgxb20181083
• 车辆工程·机械工程 • 上一篇
Wei WANG1,2(),Jian-ting ZHAO1,2,Kuan-rong HU3,Yong-cang GUO4
摘要:
为使机械臂按预定轨迹运行,设计了一种基于快速非奇异终端滑模的新型现代控制方法。该方法结合了传统的快速终端滑模和非奇异终端滑模,具有快速性、非奇异性、有限时间收敛性和强鲁棒性,并可有效抑制滑模控制器固有的抖振现象。首先,将机械臂简化为二自由度刚性连杆系统并建立数学模型;其次,设计鲁棒控制器;然后,构造李雅普诺夫函数验证其稳定性;最后,详细的对比仿真表明了本文方法的有效性。
中图分类号:
1 | Kreutz K. On manipulator control by exact linearization[J]. IEEE Transactions on Automatic Control, 1989, 34(7): 763-767. |
2 | He W, Dong Y, Sun C. Adaptive neural impedance control of a robotic manipulator with input saturation[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2016, 46(3): 334-344. |
3 | Poignet P. and Gautier M. Nonlinear model predictive control of a robot manipulator[C]∥Proceedings of the 6th International Workshop on Advanced Motion Control Proceedings, Nagoya, Japan, 2000: 401-406. |
4 | 李英, 朱明超, 李元春. 可重构机械臂模糊神经补偿控制[J]. 吉林大学学报: 工学版, 2007, 37(1): 206-211. |
Li Ying, Zhu Ming-chao, Li Yuan-chun. Neurofuzzy compensation control for reconfigurable manipulator[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(1): 206-211. | |
5 | Abdulridha H M, Hassoun Z A. Control design of robotic manipulator based on quantum neural network[J]. Journal of Dynamic Systems Measurement and control, 2018, 140(6): 61-71. |
6 | Liu M. Decentralized control of robot manipulators: nonlinear and adaptive approaches[J]. Automatic Control IEEE Transactions on, 1999, 44(2): 357-363. |
7 | 张友安, 糜玉林, 吕凤琳, 等. 双连杆柔性臂自适应模糊滑模控制[J]. 吉林大学学报: 工学版, 2005, 35(5): 520-525. |
Zhang You-an, Mi Yu-lin, Feng-lin Lyv, et al. Adaptive fuzzy sliding mode control for two-link flexible manipulator[J]. Journal of Jilin University (Engineering and Technology Edition), 2005, 35(5): 520-525. | |
8 | Feng Y, Yu X, Man Z. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167. |
9 | Youcef-Toumi K, Asada H. The design and control of manipulators with decoupled and configuration-invariant inertia tensors[C]∥American Control Conference, Seattle, WA, USA, 1986: 811-817. |
10 | Su Y, Dong S, Lu R, et al. Integration of saturated PI synchronous control and PD feedback for control of parallel manipulators[J]. IEEE Transactions on Robotics, 2006, 22(1): 202-207. |
11 | Tomizuka M, Horowitz R. Model reference adaptive control of mechanical manipulators[J]. IFAC Proceedings Volumes, 1983, 16(9): 27-32. |
12 | He W, Chen Y, Yin Z. Adaptive neural network control of an uncertain robot with full-state constraints[J]. IEEE Transactions on Cybernetics, 2017, 46(3): 620-629. |
13 | Sun C, He W, Hong J. Neural network control of a flexible robotic manipulator using the lumped spring-mass model[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(8): 1863-1874. |
14 | Yu X, Man Z. Fast terminal sliding-mode control design for nonlinear dynamical systems[J]. IEEE Transactions on Circuits & Systems I Fundamental Theory & Applications, 2002, 49(2): 261-264. |
15 | Feng Y, Yu X, Man Z. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159-2167. |
16 | Chen S Y, Lin F J. Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 636-643. |
17 | Shtessel Y, Taleb M, Plestan F. A novel adaptive-gain supertwisting sliding mode controller: methodology and application[J]. Automatica, 2012, 48(5):759-769. |
18 | Zhang M, Tian P, Chen X, et al. Ground target tracking guidance law for fixed-wing unmanned aerial vehicle: a search and capture approach[J]. Journal of Dynamic Systems Measurement and Control, 2017, 139(10): 45-50. |
19 | He S, Lin D, Wang J. Chattering-free adaptive fast convergent terminal sliding mode controllers for position tracking of robotic manipulators[J]. Proceedings of The Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 2015, 230(4): 514-526. |
20 | Moreno J A, Osorio M. Strict lyapunov functions for the super-twisting algorithm[J]. IEEE Transactions on Automatic Control, 2012, 57(4): 1035-1040. |
[1] | 刘富,安毅,董博,李元春. 基于ADP的可重构机械臂能耗保代价分散最优控制[J]. 吉林大学学报(工学版), 2020, 50(1): 342-350. |
[2] | 曲兴田,王学旭,孙慧超,张昆,闫龙威,王宏一. 熔融沉积成型技术3D打印机加热系统的模糊自适应PID控制[J]. 吉林大学学报(工学版), 2020, 50(1): 77-83. |
[3] | 马常友, 高海波, 丁亮, 于海涛, 邢宏军, 邓宗全. 机器人末端执行器自更换机构设计及对接策略[J]. 吉林大学学报(工学版), 2019, 49(6): 2027-2037. |
[4] | 马苗苗,潘军军,刘向杰. 含电动汽车的微电网模型预测负荷频率控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1644-1652. |
[5] | 于树友,谭雷,王伍洋,陈虹. 基于三步法的汽车主动四轮转向控制[J]. 吉林大学学报(工学版), 2019, 49(3): 934-942. |
[6] | 温海营,任翔,徐卫良,丛明,秦文龙,胡书海. 咀嚼机器人颞下颌关节仿生设计及试验测试[J]. 吉林大学学报(工学版), 2019, 49(3): 943-952. |
[7] | 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H∞性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819. |
[8] | 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826. |
[9] | 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843. |
[10] | 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555. |
[11] | 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562. |
[12] | 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190. |
[13] | 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198. |
[14] | 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858. |
[15] | 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852. |
|