吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (2): 501-510.doi: 10.13229/j.cnki.jdxbgxb20200037

• 材料科学与工程 • 上一篇    

光斑直径对激光冲击强化铝合金腐蚀性能的影响

罗开玉1,2(),陈俊成1,王长雨1,鲁金忠1   

  1. 1.江苏大学 机械工程学院,江苏 镇江 212013
    2.江苏大学 工程技术研究院,江苏 镇江 212013
  • 收稿日期:2020-01-14 出版日期:2021-03-01 发布日期:2021-02-09
  • 作者简介:罗开玉(1975-),女,教授,博士生导师.研究方向:激光加工技术.E-mail:kyluo@ujs.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFB1103603);国家自然科学基金项目(51775250);江苏省科技计划项目(BE2017142);江苏省“六大人才高峰”高层次人才项目(2019-GDZB-251)

Effect of spot diameteron corrosion resistance of aluminum alloy subjected to laser shock peening

Kai-yu LUO1,2(),Jun-cheng CHEN1,Chang-yu WANG1,Jin-zhong LU1   

  1. 1.School of Mechanical Engineering,Jiangsu University,Zhenjiang 212013,China
    2.College of Engineering Technology,Jiangsu University,Zhenjiang 212013,China
  • Received:2020-01-14 Online:2021-03-01 Published:2021-02-09

摘要:

为研究不同光斑直径对激光冲击强化6061-T6铝合金电化学腐蚀性能的影响,测量了表面粗糙度和残余应力,进行了截面金相和电化学腐蚀实验。结果表明:激光冲击强化使材料的表层晶粒细化、表面粗糙度增大且产生残余压应力。未冲击试样、2 mm和3 mm光斑直径激光冲击试样的腐蚀电流密度分别为:154.5 μA/cm2、14.70 μA/cm2和11.17 μA/cm2,激光冲击强化有效地提高了材料的耐腐蚀性能。2 mm光斑直径激光冲击试样相比于3 mm光斑直径激光冲击试样拥有较差的表面形貌,其耐腐蚀性能较差。

关键词: 激光冲击强化, 铝合金, 电化学腐蚀, 表面粗糙度, 残余应力

Abstract:

In order to investigate the effect of different spot diameters on the electrochemical corrosion resistance of 6061-T6 aluminum alloy subjected to laser shock peening, the surface roughness and residual stress of the alloy were measured. The cross-sectional metallographic and electrochemical corrosion experiments were carried out. Corroded specimens were observed and analyzed by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Results show that laser shock peening refines the surface grains of 6061-T6 alloy, increases the surface roughness and generates a compressive residual stress. The corrosion current densities of the untreated specimen, treated specimens with 2 mm and 3 mm spot diameters were 154.5 μA/cm2, 14.70 μA/cm2 and 11.17 μA/cm2, respectively, indicating that laser shock peening effectively improves the corrosion resistance. The treated specimen with 2 mm spot diameter had worse surface topographies than that of the treated specimen with 3 mm spot diameter, resulting in the lower corrosion resistance.

Key words: laser shock peening, aluminum alloy, electrochemical corrosion, surface roughness, residual stress

中图分类号: 

  • TN249

图1

激光冲击强化区域尺寸示意图"

图2

未冲击试样和不同激光冲击处理试样的表面残余应力"

表1

不同激光处理后表面粗糙度 (μm)"

试样Ra(x)Ra(x)ˉRa(y)Ra(y)ˉRaˉ
测量1测量2测量3测量1测量2测量3
未冲击-01.8311.9221.7551.8361.8021.7691.8651.8191.828
未冲击-11.7021.8101.9171.8101.8851.9571.8011.8811.846
LSP-2 mm-02.4922.6022.5902.5612.4382.7392.4802.5522.557
LSP-2 mm-12.5902.4822.6042.5592.5182.6202.5052.5472.553
LSP-3 mm-02.0351.9022.2692.0692.1272.0172.1752.1362.103
LSP-3 mm-12.1132.0632.0892.0882.1852.1042.2272.1722.130

图3

LSP-2 mm试样的横截面金相形貌"

图4

LSP-3 mm试样的横截面金相形貌"

图5

不同铝合金试样在3.5% NaCl中的开路电压"

图6

不同铝合金试样在3.5% NaCl溶液中的阻抗谱曲线"

图7

不同铝合金试样在3.5% NaCl溶液中的极化曲线"

表2

从图7中的极化曲线得到的不同腐蚀参数"

试样自腐蚀电位/(V vs.SCE)点蚀电位/ (V vs.SCE)钝化电位/ (V vs.SCE)自腐蚀电流密度/(μA·cm-2)
未冲击-1.276-0.669-1.056154.5
LSP-2 mm-1.216-0.698-1.09814.70
LSP-3 mm-1.192-0.671-0.85111.17

图8

未冲击试样电化学腐蚀后的表面形貌"

图9

LSP-2 mm冲击试样电化学腐蚀后的表面形貌"

图10

LSP-3 mm冲击试样电化学腐蚀后的表面形貌"

图11

能谱成分分析图"

图12

未冲击和不同激光冲击处理试样在3.5% NaCl溶液中的电化学腐蚀反应示意图"

1 Salimianrizi A, Foroozmehr E, Badrossamay M, et al. Effect of laser shock peening on surface properties and residual stress of Al6061-T6[J]. Optics and Lasers in Engineering, 2016, 77: 112-117.
2 缪宏, 左敦稳, 王珉, 等.喷丸强化对NAK80钢表面完整性的影响[J]. 吉林大学学报: 工学版, 2011, 41(5): 1290-1294.
Miao Hong, Zuo Dun-wen, Wang Min, et al. Effect of shot peening on surface integrity of NAK80 steel[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(5): 1290-1294.
3 Sun Q Q, Han Q Y, Xu R, et al. Localized corrosion behaviour of AA7150 after ultrasonic shot peening:Corrosion depth vs. impact energy[J]. Corrosion Science,2018, 130: 218-230.
4 汪志太, 林鑫, 曹永青, 等.外部冷却条件对激光熔凝Ni-Sn合金反常共晶形成的影响[J]. 中国激光, 2014, 41(12): 91-96.
Wang Zhi-tai, Lin Xin, Cao Yong-qing, et al. External cooling condition effects on formation of anomalous eutectic in Ni-Sn alloy by laser remelting[J]. Chinese J Lasers, 2014, 41(12): 91-96.
5 罗开玉, 邢月华, 柴卿锋, 等. 激光冲击强化对2Cr13不锈钢腐蚀疲劳性能的影响[J]. 吉林大学学报: 工学版, 2019, 49(3): 850-858.
Luo Kai⁃yu, Xing Yue⁃hua, Chai Qing⁃feng, et al. Effect of laser shock peening on corrosion fatigue behaviour of 2Cr13 stainless steel[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 850-858.
6 吴边, 王声波, 郭大浩, 等. 激光冲击铝合金改性处理研究[J]. 光学学报, 2005, 25(10): 1352-1356.
Wu Bian, Wang Sheng-bo, Guo Da-hao, et al. Research of material modification induced by laser s hock processing on aluminum alloy[J]. Acta Optica Sinica, 2005, 25(10):1352-1356.
7 周建忠, 刘会霞, 冯爱新, 等. 激光冲击波技术用材料加工的研究进展[J]. 应用激光, 2005, 25(1): 27-31, 44.
Zhou Jian-zhong, Liu Hui-xia, Feng Ai-xin, et al. Advances on the application of laser induced shock wave in metal processing[J]. Applied Laser, 2005, 25(1): 27-31, 44.
8 张青来, 王荣, 张冰昕, 等. 激光冲击强化对AZ31镁合金力学性能和组织结构的影响[J]. 中国激光, 2015, 42(3): 39-45.
Zhang Qing-lai, Wang Rong, Zhang Bing-xin, et al. Effect of laser shock processing on mechanical properties and microstructures of AZ31 magnesium alloy[J]. Chinese J Lasers, 2015, 42(3): 39-45.
9 汪诚, 赖志林, 何卫锋, 等. 激光冲击次数对1Cr11Ni2W2MoV不锈钢高周疲劳性能的影响[J]. 中国激光, 2014, 41(1): 46-51.
Wang Cheng, Lai Zhi-lin, He Wei-feng, et al. Effect of multi-impact on high cycle fatigue properties of 1Cr11Ni2W2MoV stainless steel subject to laser shock processing[J]. Chinese J Lasers, 2014, 41(1): 46-51.
10 王江涛, 张永康, 陈菊芳, 等. 激光冲击对7075铝合金等离子弧焊接头电化学腐蚀行为的影响[J]. 中国激光, 2015, 42(12): 106-115.
Wang Jiang-tao, Zhang Yong-kang, Chen Ju-fang, et al. Effect of laser shock processing on electrochemical corrosion behavior of 7075 aluminum alloy plasma arc weldments[J]. Chinese J Lasers, 2015, 42(12): 106-115.
11 邢清蒲, 张凌峰, 李少哲, 等. 激光冲击强化对2A02铝合金电化学腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2013, 25(5): 402-405.
Xing Qing-pu, Zhang Ling-feng, Li Shao-zhe, et al. Effect of laser shock processing on electrochemical corrosion behavior of 2A02 Aluminum alloy[J]. Corrosion Science and Protection Technology, 2013, 25(5): 402-405.
12 宁成义, 黄亿辉, 张广义, 等. 激光冲击强化6061铝合金耐磨性能及电化学性能的实验研究[J]. 激光与光电子学进展, 2018, 55(6): 254-259.
Ning Cheng-yi, Huang Yi-hui, Zhang Guang-yi, et al. Experimental study of wear resistance and eletrochemical corrosion properties of 6061 aluminum alloy treated by laser shock peening[J].China Academic Journal Electronic Publishing House, 2018, 55(6): 254-259.
13 Trdan U, Grum J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and EIS methods[J]. Corrosion Science, 2012, 59: 324-333.
14 Luo K Y, Wang C Y, Sun G F, et al. Investigation and microstructural analyses of massive LSP impacts with coverage area on crack initiation location and tensile properties of AM50 magnesium alloy[J]. Materials Science Engineering A, 2016, 650: 110-118.
15 Luo K Y, Wang C Y, Cui C Y, et al. Effects of coverage layer on the electrochemical corrosion behaviour of Mg-Al-Mn alloy subjected to massive laser shock peening treatment[J]. Journal of Alloys and Compounds, 2018, 782: 1058-1075.
16 Zhao X Y, Chen X, Wang X. Effect of aging processes on corrosion behavior and stress corrosion sensitivity of pre-stretched 7075 aluminum alloy[J]. Material and Corrosion, 2018, 69(7): 850-857.
17 Torbati-Sarraf H, Stannard T J, Plante E C L, et al. Direct observations of microstructure-resolved corrosion initiation in AA7075-T651 at the nanoscale using vertical scanning interferometry (VSI)[J]. Materials Characterization, 2020, 161: 110166.
18 Yang Y, Zhou W F, Tong Z P, et al. Electrochemical corrosion behavior of 5083 aluminum alloy subjected to laser shock peening[J]. Journal of Materials Engineering and Performance, 2019, 28(10): 1-11.
19 Lee H S, Kim D S, Jung J S, et al. Influence of peening on the corrosion properties of AISI 304 stainless steel[J]. Corrosion Science, 2009, 51(12): 2826-2830.
[1] 梁继才,廖雁飞,滕菲,梁策,李义. 矩形截面型材三维多点拉弯成形减薄率[J]. 吉林大学学报(工学版), 2021, 51(1): 163-171.
[2] 刘纯国,于晓彤,岳韬,李东来,张明哲. 双曲率筋条壁板铣削回弹预测[J]. 吉林大学学报(工学版), 2021, 51(1): 188-199.
[3] 田银宝,申俊琦,胡绳荪,勾健. EP/EN模数对铝合金VP-CMT焊熔滴过渡及焊道成形的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1663-1668.
[4] 宫文彪,朱芮,郄新哲,崔恒,宫明月. 6082铝合金超厚板搅拌摩擦焊接头组织与性能[J]. 吉林大学学报(工学版), 2020, 50(2): 512-519.
[5] 刘义伦,王卿,刘驰,李松柏,何军,赵先琼. 蠕变和人工时效对2524铝合金疲劳裂纹扩展性能的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1636-1643.
[6] 徐戊矫,刘承尚,鲁鑫垚. 喷丸处理后6061铝合金工件表面粗糙度的模拟计算及预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1280-1287.
[7] 鲁金忠,周婉婷,张圣洋,邵亦锴,王长雨,罗开玉. 激光冲击强化层数对6061⁃T6铝合金抗腐蚀性能的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 842-849.
[8] 李于朋,孙大千,宫文彪. 6082⁃T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报(工学版), 2019, 49(3): 836-841.
[9] 罗开玉,邢月华,柴卿锋,吴世凯,尹叶芳,鲁金忠. 激光冲击强化对2Cr13不锈钢腐蚀 疲劳性能的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 850-858.
[10] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[11] 胡志清, 颜庭旭, 李洪杰, 吕振华, 廖伟, 刘庚. 深冷处理对铝合金薄板冲剪成形性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1524-1530.
[12] 刘子武, 李剑峰. 叶片材料FV520B再制造熔覆层冲蚀损伤行为及评价[J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[13] 胡志清, 郑会会, 徐亚男, 张春玲, 党停停. 表面微沟槽对Al/CFRP胶结性能的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[14] 付文智, 刘晓东, 王洪波, 闫德俊, 刘晓莉, 李明哲, 董玉其, 曾振华, 刘桂彬. 关于1561铝合金曲面件的多点成形工艺[J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[15] 陈超, 赵升吨, 崔敏超, 韩晓兰, 范淑琴, 石田徹. AL5052铝合金板平压重塑形连接试验[J]. 吉林大学学报(工学版), 2017, 47(5): 1512-1518.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!