吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (4): 1342-1348.doi: 10.13229/j.cnki.jdxbgxb20200300

• 交通运输工程·土木工程 • 上一篇    

测量路面三维纹理双目重构算法的约束改进

王元元1(),孙璐2,刘卫东3,薛金顺1   

  1. 1.湖北文理学院 纯电动汽车动力系统设计与测试湖北省重点实验室,湖北 襄阳 441053
    2.马里兰大学帕克分校 土木与环境工程学院,美国 马里兰州 20742
    3.广西交科集团有限公司 广西道路结构与材料重点实验室,南宁 530007
  • 收稿日期:2020-05-08 出版日期:2021-07-01 发布日期:2021-07-14
  • 作者简介:王元元(1987-),男,副教授,博士. 研究方向:路面结构与材料. E-mail: wyy1005@seu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51808084);“机电汽车”湖北省优势特色学科群项目(XKQ2021026)

Constraint improvement of binocular reconstruction algorithm used to measure pavement three-dimensional texture

Yuan-yuan WANG1(),Lu SUN2,Wei-dong LIU3,Jin-shun XUE1   

  1. 1.Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle,Hubei University of Arts and Science,Xiangyang 441053,China
    2.Department of Civil and Environmental Engineering,College Park,University of Maryland,MD 20742,USA
    3.Guangxi Key Lab of Road Structure and Materials,Guangxi Transportation Science and Technology Group Co. Ltd. ,Nanning 530007,China
  • Received:2020-05-08 Online:2021-07-01 Published:2021-07-14

摘要:

为了提高沥青路面三维纹理的测量精度,对传统双目重构算法开展了三重约束改进:首先,引入激光线约束;其次,加工改进双目重构测试系统和三维纹理测量精度评价装置;最后,建立区域分割匹配算法。结果表明:无论是整体测量还是单点测量,引入激光线约束均有助于提高精度,且测量精度会随激光线约束数目的增多而提高,6条激光线约束数目已经可以满足路面纹理的测量。改进算法能够在50~350 LUX的光照范围内保持稳定,具有良好的抗光干扰能力。

关键词: 道路工程, 激光线约束, 改进双目重构算法, 区域分割匹配, 三维纹理

Abstract:

In order to improve the measurement accuracy of three-dimensional (3D) texture of asphalt pavement, the traditional binocular reconstruction algorithm was improved in threefold. First, the laser line constraint was introduced. Second, the improved binocular reconstruction test system and the 3D texture measurement precision evaluation device were produced. Finally, the regional segmentation matching algorithm was established. The results show that the introduction of laser line constraints can improve the accuracy of both overall measurement and single point measurement. Moreover, the measurement accuracy of the improved algorithm can be improved with the increase in the number of laser line constraints. Using six laser constraints, the improved algorithm can satisfy the precise measurement of pavement 3D texture. Additionally, the improved algorithm has good anti-interference ability to light, and can keep stable in the illumination range of 50~ 350 LUX.

Key words: road engineering, laser line constraint, improved binocular reconstruction algorithm, region segmentation matching, three-dimensional texture

中图分类号: 

  • U416

图1

改进双目重构测试系统"

图2

基于激光线约束的改进双目重构算法流程图"

图3

三维纹理测量精度的评价装置"

图4

右图像中指定激光点位的提取过程图"

图5

右图像激光线目标识别与提取过程图"

图6

区域分割匹配算法下右图像中子区域分割结果图"

图7

区域分割立体匹配下三维纹理重构效果图"

表1

三维纹理形貌测量精度评价装置的测试结果"

指标由激光定位系统指定的激光点位
1#2#3#4#5#6#7#
左图坐标/pixel(515,826)(441,755)(424,824)(384,883)(360,754)(525,890)(492,942)
右图坐标/pixel(516,369)(442,300)(424,366)(385,422)(360,300)(526,430)(493,483)
游标卡尺实测高程/mm105.40105.68105.20104.57106.10104.66104.86
参考高程差/mm-0.28-0.20-0.830.70-0.75-0.55

表2

不同激光线约束数目下三维纹理的测量结果"

分项指定激光点位序号统计结果
1#2#3#4#5#6#7#平均偏差最大偏差
参考高程差/mm-0.28-0.20-0.830.70-0.75-0.55--
0条激光线约束测试高程/mm105.31105.68105.39105.12106.22105.13105.08--
高程差/mm-0.370.08-0.190.91-0.18-0.23--
绝对偏差/mm-0.090.280.640.210.570.320.350.64
相对偏差/%-32.14-140.00-77.1130.00-76.00-58.18-48.19-140.00
匹配算法运行时间/s0.2928
2条激光线约束测试高程/mm105.35105.77105.38105.14106.3105.14104.74--
高程差/mm-0.420.03-0.210.95-0.21-0.61--
绝对偏差/mm-0.140.230.620.250.54-0.060.290.62
相对偏差/%-50.00-115.00-74.7035.71-72.0010.91-27.51-115.00
匹配算法运行时间/s3.4337
4条激光线约束测试高程/mm105.32105.77105.07104.91106.22105.10104.38--
高程差/mm-0.45-0.25-0.410.90-0.22-0.94--
绝对偏差/mm-0.17-0.050.420.200.53-0.390.150.42
相对偏差/%-60.7125.00-50.6028.57-70.6770.9110.6570.91
匹配算法运行时间/s4.1020
6条激光线约束测试高程/mm105.60105.92105.31104.91106.27104.82105.15--
高程差/mm-0.32-0.29-0.690.67-0.78-0.45--
绝对偏差/mm-0.04-0.090.14-0.03-0.030.100.020.14
相对偏差/%-14.2945.00-16.87-4.294.00-18.183.9945.00
匹配算法运行时间/s5.6911

表3

不同光照条件下三维纹理的测量结果"

分项指定激光点位序号
1#2#3#4#5#6#7#
参考高程差/mm-0.28-0.20-0.830.70-0.75-0.55
5 LUX测试高程/mm105.61105.91105.61105.28105.57105.09105.19
高程差/mm-0.300-0.33-0.04-0.52-0.42
绝对偏差/mm平均值=0.06,最大值=-0.74
相对偏差/%平均值=-52.19,最大值=-105.71
50 LUX测试高程/mm105.61105.90105.32104.88106.30104.84105.14
高程差/mm-0.29-0.29-0.730.69-0.77-0.47
绝对偏差/mm平均值=0.01,最大值=0.10
相对偏差/%平均值=3.87,最大值=45.00
240 LUX测试高程/mm105.58105.89105.29104.92106.26104.78105.13
高程差/mm-0.31-0.29-0.660.68-0.80-0.45
绝对偏差/mm平均值=0.02,最大值=0.17
相对偏差/%平均值=3.48,最大值=45.00
350 LUX测试高程/mm105.60105.92105.31104.91106.27104.82105.15
高程差/mm-0.32-0.29-0.690.67-0.78-0.45
绝对偏差/mm平均值=0.02,最大值=0.14
相对偏差/%平均值=3.99,最大值=45.00
1 中华人民共和国国家统计局.中国统计年鉴-2019 (第24章) [M].北京:中国统计出版社,2019.
2 周兴林,肖神清,肖旺新,等. 粗集料表面纹理粗糙度的多重分形评价[J].华中科技大学学报:自然科学版,2017,45(2):29-33.
Zhou Xing-lin, Xiao Shen-qing, Xiao Wang-xin, et al. Multi fractal evaluation on roughness of coarse aggregate surface texture [J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2017,45(2):29-33.
3 Wang Y, Lai X, Zhou F, et al. Evaluation of pavement skid resistance using surface three-dimensional texture data [J]. Coatings, 2020, 10(2):162.
4 Yang G, Li Q J, Zhan Y, et al. Convolutional neural network-based friction model using pavement texture data[J]. Journal of Computing in Civil Engineering, 2018, 32(6):04018052.
5 曹平. 表面形貌与污染物对沥青路面抗滑性能影响的研究[D]. 武汉:武汉理工大学能源与动力工程学院, 2009.
Cao Ping. Study on effects of texture and contaminants to skid resistance of asphalt pavements[D]. Wuhan:School of Energy and Power Engineering, Wuhan University of Technology, 2009.
6 Wang Y, Yang Z, Liu Y, et al. The characterisation of three-dimensional texture morphology of pavement for describing pavement sliding resistance[J]. Road Materials and Pavement Design, 2019, 20(5):1076-1095.
7 Liu Q, Shalaby A. Relating concrete pavement noise and friction to three-dimensional texture parameters[J]. International Journal of Pavement Engineering, 2015, 18(5): 450-458.
8 Kanafi M M, Kuosmanen A, Pellinen T K, et al. Macro-and micro-texture evolution of road pavements and correlation with friction[J]. International Journal of Pavement Engineering, 2015, 16(2):168-179.
9 El Gendy A, Shalaby A, Saleh M, et al. Stereo-vision applications to reconstruct the 3D texture of pavement surface[J]. International Journal of Pavement Engineering, 2011, 12(3):263-273.
10 Sun L, Wang Y Y. Three-dimensional reconstruction of macrotexture and microtexture morphology of pavement surface using six light sources—based photometric stereo with low-rank approximation[J]. Journal of Computing in Civil Engineering, 2017,31(2): 04016054.
11 马双涛, 韩九强, 张新曼. 复杂光照条件下非凸表面形状恢复[J]. 仪器仪表学报, 2009, 30(3):559-563.
Ma Shuang-tao, Han Jiu-qiang, Zhang Xin-man. Shape recovery of non-convex surface under complex illum ination[J]. Chinese Journal of Scientific Instrument, 2009, 30(3):559-563.
12 王昊,刘雍翡.基于双目视觉计算的车辆跟驰状态实时感知系统[J].中国公路学报,2019,32(12):88-97, 105.
Wang Hao, Liu Yong-fei. Car-following state real-time estimation system based on binocular vision[J]. China Journal of Highway and Transport, 2019,32(12):88-97, 105.
13 张辉, 张丽艳. 面向三维点云测量的双目立体匹配算法[J]. 南京航空航天大学学报, 2009, 41(5):588-594.
Zhang Hui, Zhang Li-Yan. Binocular stereo matching algorithm for 3D point cloud acquisition[J]. Journal of Nanjing University of Aeronautics&Astronautics, 2009,41(5):588-594.
14 Cochran S D, Medioni G. 3-D surface description from binocular stereo[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1992, 14(10):981-994.
15 Chu L, Tang B, Fwa T F. Evaluation of functional characteristics of laboratory mix design of porous pavement materials[J]. Construction and Building Materials, 2018,191:281-289.
16 Liu Y, Wang Y, Cai X, et al. The detection effect of pavement 3D texture morphology using improved binocular reconstruction algorithm with laser line constraint[J]. Measurement, 2020,157: No. 107638.
17 刘江江. 围棋矩阵模拟信号远程数字传输控制系统的研究[D].天津: 天津大学自动化学院,2007.
Liu Jiang-jiang. Research on remote digital transmission control system for go-matrix analog signal[D]. Tianjing: School of Automation,Tianjing University, 2007.
[1] 彭勇,杨汉铎,陆学元,李彦伟. 基于离散元法的空隙特征对沥青混合料虚拟剪切疲劳寿命的影响[J]. 吉林大学学报(工学版), 2021, 51(3): 956-964.
[2] 朱伟刚,朱超,张亚球,魏海斌. 基于卷积格网曲面拟合滤波算法的数字高程模型构建及质量评价[J]. 吉林大学学报(工学版), 2021, 51(3): 1073-1080.
[3] 程永春,李赫,李立顶,王海涛,白云硕,柴潮. 基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J]. 吉林大学学报(工学版), 2021, 51(3): 925-935.
[4] 宫亚峰,逄蕴泽,王博,谭国金,毕海鹏. 基于吉林省路况的新型预制装配式箱涵结构的力学性能[J]. 吉林大学学报(工学版), 2021, 51(3): 917-924.
[5] 阳恩慧,徐加秋,唐由之,李奥,邱延峻. 温拌剂对沥青断裂和老化性能的影响[J]. 吉林大学学报(工学版), 2021, 51(2): 604-610.
[6] 戴文亭,司泽华,王振,王琦. 剑麻纤维水泥加固土的路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 589-593.
[7] 方宇,孙立军. 基于生存分析的城市桥梁使用性能衰变模型[J]. 吉林大学学报(工学版), 2020, 50(2): 557-564.
[8] 王芳,李晓光,郭慧,胡佳. 基于驾驶员视觉兴趣区的沙漠草原公路曲线间直线段线形指标优化[J]. 吉林大学学报(工学版), 2020, 50(1): 114-120.
[9] 王英,李萍,念腾飞,姜继斌. 基于动水冲刷作用的沥青混合料短期水损害特性[J]. 吉林大学学报(工学版), 2020, 50(1): 174-182.
[10] 万平,吴超仲,马晓凤. 基于ROC曲线和驾驶行为特征的驾驶愤怒强度判别阈值[J]. 吉林大学学报(工学版), 2020, 50(1): 121-131.
[11] 熊锐,乔宁,褚辞,杨发,关博文,盛燕萍,牛冬瑜. 掺盐沥青胶浆低温流变及粘附特性[J]. 吉林大学学报(工学版), 2020, 50(1): 183-190.
[12] 朱春凤,程永春,梁春雨,肖波. 硅藻土⁃玄武岩纤维复合改性沥青混合料路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(1): 165-173.
[13] 狄胜同,贾超,乔卫国,李康,童凯. 橡胶集料混凝土细观损伤特性的加载速率效应[J]. 吉林大学学报(工学版), 2019, 49(6): 1900-1910.
[14] 张云龙,周刘光,王静,吴春利,吕翔. 冻融对粉砂土力学特性及路堤边坡稳定性的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1531-1538.
[15] 彭勇,高华,万蕾,刘贵应. 沥青混合料劈裂强度影响因素数值模拟[J]. 吉林大学学报(工学版), 2019, 49(5): 1521-1530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!