吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (5): 1851-1856.doi: 10.13229/j.cnki.jdxbgxb20201004

• 计算机科学与技术 • 上一篇    

基于K⁃means聚类算法的绩效考核模糊综合评价系统设计

张萌谡1(),刘春天1,李希今1,黄永平2()   

  1. 1.吉林大学 人力资源处,长春 130012
    2.吉林大学 计算机科学与技术学院,长春 130012
  • 收稿日期:2020-12-30 出版日期:2021-09-01 发布日期:2021-09-16
  • 通讯作者: 黄永平 E-mail:zms@jlu.edu.cn;hyp@jlu.edu.cn
  • 作者简介:张萌谡(1984-),男,助理研究员,博士.研究方向:人力资源管理.E-mail:zms@jlu.edu.cn
  • 基金资助:
    吉林省科技发展计划重点研发项目(20190303134SF)

Design of fuzzy comprehensive evaluation system for performance appraisal based on K⁃means clustering algorithm

Meng-su ZHANG1(),Chun-tian LIU1,Xi-jin LI1,Yong-ping HUANG2()   

  1. 1.Human Resources Division,Jilin University,Changchun 130012,China
    2.College of Computer Science and Technology,Jilin University,Changchun 130012,China
  • Received:2020-12-30 Online:2021-09-01 Published:2021-09-16
  • Contact: Yong-ping HUANG E-mail:zms@jlu.edu.cn;hyp@jlu.edu.cn

摘要:

针对传统的绩效考核评价方法需要大量的人力和物力统一分配资源,且输入数据的存储方式也不统一,导致评价效率低和评价准确率低的问题,提出一种基于K-means聚类算法的绩效考核模糊综合评价系统设计方法,通过数据准备模块、绩效考核模糊评价模块、报表处理模块、系统维护模块构成绩效考核模糊综合评价系统的整体结构。采用层次分析法对绩效考核评价指标对应的权重进行计算,构建绩效考核模糊评价模型,采用K-means聚类算法对绩效考核模糊综合评价模型进行求解,实现绩效考核的评价,完成绩效考核模糊综合评价系统的设计。实验结果表明:本文方法的评价效率高、评价准确率高。

关键词: 计算机应用, K-means聚类算法, 绩效考核, 模糊评价, 系统设计

Abstract:

Traditional teaching quality evaluation methods require a large amount of human and material resources to be uniformly allocated and the input data are not stored in a uniform way. Such methods suffer from low evaluation efficiency and low evaluation accuracy. Therefore, this paper proposes a design method of teaching quality fuzzy comprehensive evaluation system based on K-means clustering algorithm, which constitutes the overall structure of teaching quality fuzzy comprehensive evaluation system through data preparation module, teaching quality fuzzy evaluation module, report processing module and system maintenance module. The hierarchical analysis method is used to calculate the weights corresponding to the talent quality evaluation indexes, construct the teaching quality fuzzy evaluation model, solve the teaching quality fuzzy comprehensive evaluation model by K-means clustering algorithm, realize the evaluation of teaching quality, and complete the design of the teaching quality fuzzy comprehensive evaluation system. The experimental results show that the proposed method has high evaluation efficiency and high evaluation accuracy.

Key words: computer application, K-means clustering algorithm, teaching quality, fuzzy evaluation, system design

中图分类号: 

  • TP18

图1

绩效考核模糊评价系统结构"

图2

评价程序框图"

图3

绩效考核模糊综合评价体系结构图"

表1

不同方法的评价准确率"

迭代次数本文算法模糊综合评判系统设计方法
10.650.61
20.720.69
30.780.72
40.830.76
50.920.84
60.850.79

表2

不同方法的评价时间 (s)"

迭代次数本文算法证据推理系统设计方法
10.621.32
20.651.02
30.741.62
40.671.36
50.621.26
60.581.06
1 宋晨霞, 张海光, 胡庆夕. 高校示范中心全方位绩效考核的探索与实践[J]. 实验技术与管理, 2019, 36(7): 197-200.
Song Chen-xia, Zhang Hai-guang, Hu Qing-xi. Exploration and practice of all-sided performance evaluation on university demonstration centers[J]. Experimental Technology and Management, 2019, 36(7):197-200.
2 陈丽娟, 陈滨, 刘海霞. 厦门大学图书馆的绩效考核评价体系[J]. 图书馆论坛, 2020, 40(1): 146-152.
Chen Li-juan, Chen Bin, Liu Hai-xia. The performance appraisal system of Xiamen University Library[J]. Library Tribune, 2020, 40(1): 146-152.
3 Deng X, Gu Y, Li F, et al. Evaluation of teaching quality of computing method course based on improved BP neural network[J]. Journal of Physics Conference Series, 2021, 1774: 012026.
4 李锋, 林华. 基于功效系数法与模糊综合评价法的企业营销绩效考核研究[J]. 学术论坛, 2010, 33(2): 113-116.
Li Feng, Lin Hua. Research on enterprise marketing performance evaluation based on efficiency coefficient method and fuzzy comprehensive evaluation method [J]. Academic Forum, 2010, 33(2): 113-116.
5 李桂英. 基于模糊综合评判授课质量评价系统的设计与实现[J]. 华南师范大学学报: 自然科学版, 2003(4): 48-53.
Li Gui-ying. Research and design of teaching quality evaluation system based on fuzzy comprehensive evaluation[J]. Joutnal of South China Normal University (Natural Science Edition), 2003(4): 48-53.
6 Zhao Y. Research on the application of university teaching management evaluation system based on Apriori algorithm[J]. Journal of Physics, 2021, 1883: 012033.
7 李晓霞. 基于模糊综合评价模型的教学评价系统的设计与实现[D]. 成都: 电子科技大学计算机科学与工程学院, 2015.
Li Xiao-xia. Design and implementation of teaching evaluation system on fuzzy evaluation[D]. Chengdu: School of Computer Science and Engineering, University of Electronic Science and Technology of China, 2015.
8 杨洁, 黄梦亿, 陈佳. 多粒度邻域粗糙模糊集及其不确定性度量[J]. 重庆邮电大学学报:自然科学版, 2020, 32(5): 898-908.
Yang Jie, Huang Meng-yi, Chen Jia. Neighborhood-based multi-granulation rough fuzzy sets and their uncertainty measure[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2020, 32(5): 898-908.
9 张波, 周从华, 张付全, 等. 一种面向SNP选择的模糊聚类算法[J]. 计算机工程, 2019, 45(8): 66-74.
Zhang Bo, Zhou Cong-hua, Zhang Fu-quan,et al. A Fuzzy Clustering Algorithm for SNP Selection[J]. Computer Engineering, 2019, 45(8): 66-74.
10 祖志文, 李秦. 基于粒子群优化的马氏距离模糊聚类算法[J]. 重庆邮电大学学报:自然科学版,2019, 31(2): 279-384.
Zu Zhi-wen and Li Qin. Mahalanobis distance fuzzy clustering algorithm based on particle-swarmoptimization[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2019, 31(2): 279-384.
11 钱雪忠,姚琳燕. 面向稀疏高维大数据的扩展增量模糊聚类算法[J]. 计算机工程, 2019, 45(6): 75-81.
Qian Xue-zhong,Yao Lin-ya. Extended incremental fuzzy clustering algorithm for sparse high-dimensional big data[J]. Computer Engineering, 2019, 45(6): 75-81.
12 丁志成, 葛洪伟, 周竞. 基于KL散度的密度峰值聚类算法[J]. 重庆邮电大学学报:自然科学版,2019, 31(3): 367-374.
Ding Zhi-cheng, Ge Hong-wei,Zhou Jing. Density peaks clustering based on Kullback Leibler divergence[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2019, 31(3): 367-374.
13 徐勇, 张慧, 陈亮. 一种基于情感分析的UGC模糊综合评价方法——以淘宝商品文本评论UGC为例[J]. 情报理论与实践, 2016, 39(6): 64-69.
Xu Yong, Zhang Hui, Chen Liang. A UGC fuzzy comprehensive evaluation method based on sentiment analysis—taking UGC of Taobao Product text reviews[J]. Information Studies: Theory & Application, 2016, 39(6): 64-69.
14 王茜竹, 徐瑞, 江德潮, 雒江涛. 基于多源数据的出行安全时空评价模型研究[J]. 重庆邮电大学学报:自然科学版, 2019, 31(5): 618-627.
Jiang De-chao, Luo Jiang-tao. Research on the spatial-temporal evaluation model of travel safety based on multi-source data[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2019, 31(5): 618-627.
15 MacQueen J. Some methods for classification and analysis of multivariate observations[J]. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, 14(1): 281-297.
[1] 曹洁,屈雪,李晓旭. 基于滑动特征向量的小样本图像分类方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1785-1791.
[2] 姚引娣,贺军瑾,李杨莉,谢荡远,李英. 自构建改进型鲸鱼优化BP神经网络的ET0模拟计算[J]. 吉林大学学报(工学版), 2021, 51(5): 1798-1807.
[3] 赵宏伟,张子健,李蛟,张媛,胡黄水,臧雪柏. 基于查询树的双向分段防碰撞算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1830-1837.
[4] 王春波,底晓强. 基于标签分类的云数据完整性验证审计方案[J]. 吉林大学学报(工学版), 2021, 51(4): 1364-1369.
[5] 欧阳丹彤,刘扬,刘杰. 故障响应指导下基于测试集的故障诊断方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1017-1025.
[6] 钱榕,张茹,张克君,金鑫,葛诗靓,江晟. 融合全局和局部特征的胶囊图神经网络[J]. 吉林大学学报(工学版), 2021, 51(3): 1048-1054.
[7] 朱小龙,谢忠. 基于机器学习的地理空间数据抽取算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1011-1016.
[8] 孙宝凤,任欣欣,郑再思,李国一. 考虑工人负荷的多目标流水车间优化调度[J]. 吉林大学学报(工学版), 2021, 51(3): 900-909.
[9] 王淑敏,陈伟. 基于连续密度隐马尔可夫模型的矿下异常行为识别算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1067-1072.
[10] 刘元宁,吴迪,朱晓冬,张齐贤,李双双,郭书君,王超. 基于YOLOv3改进的用户界面组件检测算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1026-1033.
[11] 陈广秋,陈昱存,李佳悦,刘广文. 基于DNST和卷积稀疏表示的红外与可见光图像融合[J]. 吉林大学学报(工学版), 2021, 51(3): 996-1010.
[12] 沈淑涛,尼玛扎西. 基于区块链技术的双混沌可识篡改图像加密方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1055-1059.
[13] 周炳海,何朝旭. 基于静态半成套策略的多目标准时化物料配送调度[J]. 吉林大学学报(工学版), 2021, 51(3): 910-916.
[14] 顾天奇,胡晨捷,涂毅,林述温. 基于移动最小二乘法的稳健重构方法[J]. 吉林大学学报(工学版), 2021, 51(2): 685-691.
[15] 许骞艺,秦贵和,孙铭会,孟诚训. 基于改进的ResNeSt驾驶员头部状态分类算法[J]. 吉林大学学报(工学版), 2021, 51(2): 704-711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!