吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 2051-2060.doi: 10.13229/j.cnki.jdxbgxb20200569

• 交通运输工程·土木工程 • 上一篇    

基于运行轨迹的网联混合车流速度协调控制

贾彦峰1(),曲大义1(),林璐1,姚荣涵2,马晓龙3   

  1. 1.青岛理工大学 机械与汽车工程学院,山东 青岛 266520
    2.大连理工大学 交通运输学院,辽宁 大连 116024
    3.国家城市道路交通装备智能化工程技术研究中心,山东 青岛 266033
  • 收稿日期:2020-07-28 出版日期:2021-11-01 发布日期:2021-11-15
  • 通讯作者: 曲大义 E-mail:771210072@qq.com;dyqu@263.net
  • 作者简介:贾彦峰(1992-),男,博士研究生. 研究方向:车路协同及安全控制. E-mail:771210072@qq.com
  • 基金资助:
    国家自然科学基金项目(51678320)

Coordinated speed control of connected mixed traffic flow based on trajectory

Yan-feng JIA1(),Da-yi QU1(),Lu LIN1,Rong-han YAO2,Xiao-long MA3   

  1. 1.School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China
    2.School of Transportation & Logistics,Dalian University of Technology,Dalian 116024,China
    3.National Urban Road Traffic Equipment Intelligent Engineering Technology Research Center,Qingdao 266033,China
  • Received:2020-07-28 Online:2021-11-01 Published:2021-11-15
  • Contact: Da-yi QU E-mail:771210072@qq.com;dyqu@263.net

摘要:

为了减少车辆走走停停的不利影响,提出了一种基于运行轨迹的单车道速度协调控制策略。首先,利用路测交通传感器采集的信息对下游车辆簇中的网联自动驾驶车辆(CAV)轨迹进行偏移和修正,以预测尾车人工驾驶车辆(HV)的运行轨迹。然后,对上游车辆簇CAV的速度分布进行规划,使上游CAV车辆簇能以更合理平滑的速度逐渐合并到下游车流。最后,数值仿真结果表明:在所设计的CAV渗透率为0%~25%、瓶颈开始的位置为575~975 m时,渗透率越高、瓶颈开始位置越远以及CAV所选用的速度引导曲线越平滑,对速度振荡的抑制程度就越强,同时证明了速度协调控制策略能有效减小交通流的波动,提高驾驶员舒适性和车辆队列整体通行效率。

关键词: 交通运输系统工程, 网联混合车流, 轨迹预测, 速度协调, 数值仿真

Abstract:

In order to reduce the adverse impact of vehicle stop and go, a single-lane speed coordination control strategy based on the trajectory is proposed. Firstly, the information collected by road-side units is used to offset and modify the trajectories of Connected Autonomous Vehicles (CAVs) in downstream vehicle clusters to predict the trajectory of Human-driving Vehicle (HV). Then, the velocity distribution of upstream CAVs are planned, so that they can merge into the downstream traffic flow at a more reasonable and smooth speed.; The numerical simulation results show that, within the designed range of 0%~25% CAV permeability and 575 m~975 m bottleneck start position, the higher the permeability, the farther the bottleneck start position, and the smoother the CAV speed guidance curve, the stronger the inhibition of speed oscillation. At the same time, it proves that the speed coordinated control strategy can effectively reduce the fluctuation of traffic flow, improve driver's comfort and overall efficiency of vehicle queue.

Key words: engineering of communication and transportation system, connected mixed traffic flow, trajectory prediction, speed coordination, numerical simulation

中图分类号: 

  • U491

图1

场景搭建示意图"

图2

需要获取的交通信息"

图3

pend附近偏移轨迹的修正"

图4

连接合并点"

图5

修正的偏移轨迹"

图6

上游车辆簇CAV首车速度引导过程"

图7

减速曲线"

图8

加速曲线"

图9

不同条件下的模拟结果"

图10

几种不同的速度引导曲线"

表1

不同CAV渗透率下的尾车到达同一位置所用时间"

CAV渗透率/%时间/s减少率/%
500 m600 m700 m
0(参照组)125.1129.2133.2-
5123.9127.5131.81.16
10121.4125.3129.52.90
15119.5123.6127.44.41
20117.6121.6125.55.90
25115.5120.2124.37.10

表2

不同lB值对应的CAV首车在不同时刻的加速度"

时间点/s瓶颈开始不同位置处的加速度/(m·s-2
575 m775 m975 m
最值差2.311.560.19
30-0.25-0.18-0.13
35-0.42-0.21-0.05
40-0.68-0.34-0.02
45-0.41-0.230.00
500.090.050.02
551.631.220.06
600.160.070.04
650.080.050.02
700.040.020.01
1 黄永现. 交通震荡演化特性的实验研究和建模仿真[D]. 合肥:中国科学技术大学工程科学学院, 2019.
Huang Yong-xian. Experimental research and modeling on the evolution of traffic oscillation[D]. Hefei: School of Engineering Sciences, China University of Science and Technology, 2019.
2 曲大义,万孟飞,李娟,等. 基于交通波理论的干线相位差优化及其控制方法[J]. 吉林大学学报:工学版,2017,47(2):429-437.
Qu Da-yi, Wan Meng-fei, Li Juan, et al. Offset optimization of arterial traffic based on traffic-wave theory and it control method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017,47 (2): 429-437.
3 Laval J A, Daganzo C F. Lane-changing in traffic streams[J]. Transportation Research Part B: Methodological, 2006, 40B(3): 251-264.
4 Ahn S, Cassidy M J. Freeway traffic oscillations and vehicle lane-change maneuvers[C]∥Transportation and Traffic Theory, London, England,2007: 691-710.
5 Laval J A. Linking synchronized flow and kinematic waves[C]∥Traffic and Granular Flow'05, Berlin, Heidelberg, 2007: 521-526.
6 Li X, Wang X, Ouyang Y. Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws[J]. Transportation Research Part B: Methodological, 2012, 46(3): 409-423.
7 文展,唐康健,李文藻. 一种改进粒子群优化算法在车辆路径问题的应用研究[J]. 重庆邮电大学学报:自然科学版, 2020, 32(5): 875-883.
Wen Zhan, Tang Kang⁃jian, Li Wen⁃zao. Research on application of vehicle routing problem using an enhanced particle swarm optimization[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2020, 32(5): 875-883.
8 Zheng Z, Ahn S, Chen D, et al. Freeway traffic oscillations: microscopic analysis of formations and propagations using wavelet transform[J]. Procedia-Social and Behavioral Sciences, 2011, 17: 702-716.
9 王庞伟,于洪斌,张为,等. 城市车路协同系统下实时交通状态评价方法[J]. 中国公路学报,2019,32(6):176-187.
Wang Pang-wei, Yu Hong-bin, Zhang Wei, et al. Real-time traffic status evaluation method for urban cooperative vehicle infrastructure system[J]. China Journal of Highway and Transport, 2019, 32(6):176-187.
10 Piao J, McDonald M. Safety impacts of variable speed limits—a simulation study[C]∥2008 11th International IEEE Conference on Intelligent Transportation Systems, Beijing, China, 2008: 833-837.
11 Han Y, Chen D, Ahn S. Variable speed limit control at fixed freeway bottlenecks using connected vehicles[J]. Transportation Research Part B: Methodological, 2017, 98: 113-134.
12 Soriguera F, Martínez I, Sala M, et al. Effects of low speed limits on freeway traffic flow[J]. Transportation Research Part C: Emerging Technologies, 2017, 77: 257-274.
13 荆彬彬,卢凯,鄢小文,等. 车路协同下基于速度引导的双周期干道绿波协调控制方法[J].华南理工大学学报:自然科学版,2016,44(8):147-154.
Jing Bin-bin, Lu Kai, Yan Xiao-wen, et al. Green wave coordinated control method based on speed guidance for dual period arterial roads under vehicle road coordination[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(8): 147-154.
14 曲大义,杨晶茹,邴其春,等. 基于干线车流排队特性的相位差优化模型[J].吉林大学学报:工学版,2018,48(6):1685-1693.
Qu Da-yi, Yang Jing-ru, Bing Qi-chun, et, al. Phase difference optimization model based on queuing characteristics of arterial traffic flow[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1685-1693.
15 庞明宝,安少怡. 快速路与邻接交叉口分散换道和速度引导方法[J]. 交通运输系统工程与信息,2019, 19(6): 168-175.
Pang Ming-bao, An Shao-yi. Dispersive lane change and speed guidance method for expressways and adjacent intersections[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(6): 168-175.
16 Zhao W, Ngoduy D, Shepherd S, et al. A platoon based cooperative eco-driving model for mixed automated and human-driven vehicles at a signalised intersection[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 802-821.
17 Guo Y, Ma J, Xiong C, et al. Joint optimization of vehicle trajectories and intersection controllers with connected automated vehicles: combined dynamic programming and shooting heuristic approach[J]. Transportation Research Part C: Emerging Technologies, 2019, 98: 54-72.
18 冯心欣,柳泽烽,谢志鹏,等.考虑道路形状约束的车辆轨迹聚类方法[J]. 重庆邮电大学学报: 自然科学版, 2019, 31(4): 556-562.
Feng Xin⁃xin, Liu Ze⁃feng, Xie Zhi⁃peng, et al. Vehicle trajectory clustering method considering road shape[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2019,31(4):556-562.
19 夏英,王瑞迪,张旭,等. Spark环境下基于网格索引的轨迹k近邻查询方法[J].重庆邮电大学学报:自然科学版, 2019, 31(4): 531-537.
Xia Ying, Wang Rui⁃di, Zhang Xu, et al. Grid-based k-nearest neighbors query over moving trajectories under spark[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2019, 31(4): 531-537.
20 Wang Q, Hu J, Zhang J, et al. Extraction of traffic status based on spatial-temporal trajectory reconstruction[C]∥6th Advanced Forum on Transportation of China,Beijing, China,2011: 221-228.
[1] 薛锋,何传磊,黄倩,罗建. 多式轨道交通网络的耦合协调度[J]. 吉林大学学报(工学版), 2021, 51(6): 2040-2050.
[2] 姚宗伟,高旭东,刘刚,毕秋实. 基于数值仿真的大型塔式磨机工作特性分析[J]. 吉林大学学报(工学版), 2021, 51(5): 1642-1650.
[3] 陆文琦,周天,谷远利,芮一康,冉斌. 基于张量分解理论的车道级交通流数据修复算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1708-1715.
[4] 卢凯,吴蔚,林观荣,田鑫,徐建闽. 基于KNN回归的客运枢纽聚集人数组合预测方法[J]. 吉林大学学报(工学版), 2021, 51(4): 1241-1250.
[5] 彭博,张媛媛,王玉婷,唐聚,谢济铭. 基于自动编码机-分类器的视频交通状态自动识别[J]. 吉林大学学报(工学版), 2021, 51(3): 886-892.
[6] 张健,吴坤润,杨敏,冉斌. 智能网联环境下交叉口双环自适应控制模型[J]. 吉林大学学报(工学版), 2021, 51(2): 541-548.
[7] 王殿海,沈辛夷,罗小芹,金盛. 车均延误最小情况下的相位差优化方法[J]. 吉林大学学报(工学版), 2021, 51(2): 511-523.
[8] 宋现敏,张明业,李振建,王鑫,张亚南. 动态公交专用道的设置及其仿真分析评价[J]. 吉林大学学报(工学版), 2020, 50(5): 1677-1686.
[9] 贾洪飞,丁心茹,杨丽丽. 城市潮汐车道优化设计的双层规划模型[J]. 吉林大学学报(工学版), 2020, 50(2): 535-542.
[10] 尹超英,邵春福,王晓全,熊志华. 考虑空间异质性的建成环境对通勤方式选择的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 543-548.
[11] 张大伟,祝海涛. 考虑行人差异性的人群疏散最优决策理论模型[J]. 吉林大学学报(工学版), 2020, 50(2): 549-556.
[12] 常玉林,袁才鸿,孙超,张鹏. 基于改进元胞传输模型的城市路网实际阻抗计算方法[J]. 吉林大学学报(工学版), 2020, 50(1): 132-139.
[13] 宗长富,文龙,何磊. 基于欧几里得聚类算法的三维激光雷达障碍物检测技术[J]. 吉林大学学报(工学版), 2020, 50(1): 107-113.
[14] 隋振,姜源. 基于MIMO类脑情感学习回路的横-纵向综合控制驾驶员模型[J]. 吉林大学学报(工学版), 2020, 50(1): 140-146.
[15] 别一鸣,姜凯,汤茹茹,王琳虹,熊昕宇. 考虑方案过渡影响的单点交通控制时段划分方法[J]. 吉林大学学报(工学版), 2019, 49(6): 1844-1851.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!