吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 2246-2252.doi: 10.13229/j.cnki.jdxbgxb20200133

• 通信与控制工程 • 上一篇    

基于优化离散差分进化算法的压缩感知信号重构

刘洲洲1,2(),张倩昀3,马新华1,彭寒2   

  1. 1.西安航空学院 计算机学院,西安 710077
    2.西北工业大学 计算机学院,西安 710072
    3.西安航空学院 电子工程学院,西安 710077
  • 收稿日期:2020-03-06 出版日期:2021-11-01 发布日期:2021-11-15
  • 作者简介:刘洲洲(1981-),男,教授,博士. 研究方向:传感网与信号处理. E-mail: nazi2005@126.com
  • 基金资助:
    陕西省重点研发计划一般项目(2020GY-084);陕西省教育厅科研计划项目(20JG014)

Compressed sensing signal reconstruction based on optimized discrete differential evolution algorithm

Zhou-zhou LIU1,2(),Qian-yun ZHANG3,Xin-hua MA1,Han PENG2   

  1. 1.School of Computer Science,Xi'an Aeronautical University,Xi'an 710077,China
    2.School of Computer Science,Northwestern Polytechnical University,Xi'an 710072,China
    3.School of Electronic Engineering,Xi'an Aeronautical University,Xi'an 710077,China
  • Received:2020-03-06 Online:2021-11-01 Published:2021-11-15

摘要:

针对传统压缩感知重构算法严重依赖稀疏度、重构精准度不高的缺陷,提出了一种基于优化离散差分进化(ODDE)算法,对进化种群进行分析,在实现种群有效聚类的同时提高了种群学习进化的针对性和科学性。重新定义了差分进化粒子的编码方式和进化机制,并将优化后的离散差分进化算法应用于压缩感知重构方法中。将稀疏度未知信号等效为粒子编码,通过种群迭代进化实现了稀疏信号的精确重构。仿真结果表明,与StOMP等传统重构算法相比,本文方法可以显著提高重构精度、降低重构时间。

关键词: 计算机应用, 稀疏度, 离散差分, 智能进化算法, 压缩感知, 稀疏重构

Abstract:

In order to overcome the shortcomings of traditional compressed sensing reconstruction algorithms, such as heavy dependence on sparseness and low reconstruction accuracy, an Optimized Discrete Differential Evolution (ODDE) algorithm is proposed to analyze the evolutionary population. ODDE can improve the learning and evolution of the population while realizing effective clustering. The differential evolution particle coding method and evolution mechanism are redefined, and the ODDE is applied to the compressed sensing reconstruction method. The sparse unknown signal is equivalent to the particle coding, and the sparse signal is reconstructed accurately through population iterative evolution. The simulation results show that compared with traditional reconstruction algorithms such as StOMP, the reconstruction accuracy of this method is significantly improved and the reconstruction time is reduced.

Key words: computer application, sparsity, discrete difference, intelligent evolutionary algorithms, compressed sensing, sparse reconstruction

中图分类号: 

  • TP393

图1

优化差分进化算法实现流程图"

表1

四种重构算法评价指标对比"

信号指标算 法
ODDE文献[2文献[8StOMP
1RSˉ/%10097.350.217.3
Tˉ/s0.170.380.280.37
RE0.0070.0121.8453.330
2RSˉ/%10098.249.215.3
Tˉ/s0.250.440.360.82
RE0.0140.0181.0382.143
3RSˉ/%10097.655.710.8
Tˉ/s0.560.920.661.27
RE0.0130.0171.8363.045

图2

三种其他重构算法稀疏信号重构结果对比"

图3

不同K下重构成功率对比"

图4

不同M下重构成功率对比"

图5

不同SNR下4种算法抗噪性能对比"

1 Wang Tian, Liang Yu-zhu, Jia Wei-jia, et al. Coupling resource management based on fog computing in smart city systems[J]. Journal of Network and Computer Applications, 2019, 135: 11-19.
2 Wang Ding, Wu Yue-yao, Cao Wang-hui, et al. Improved reconstruction algorithm for compressed sensing[J]. Journal of Northwestern Polytechnical University, 2017, 35(5): 774-779.
3 Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
4 Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transactions on Information Theory, 2007, 52(12): 5406-5425.
5 刘浩强,赵洪博,冯文全. 基于CS的正则化稀疏度变步长自适应匹配追踪算法[J]. 北京航空航天大学学报, 2017, 43(10): 2110-2117.
Liu Hao-qiang, Zhao Hong-bo, Feng Wen-quan. Regularized sparsity variable step-size adaptive matching tracking algorithms based on CS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2110-2117.
6 孙娜, 刘继文, 肖东亮. 基于BFGS拟牛顿法的压缩感知SL0重构算法[J]. 电子与信息学报, 2018, 40(10): 2408-2414.
Sun Na, Liu Ji-wen, Xiao Dong-liang. Compressed sensing SL0 reconstruction algorithms based on BFGS quasi-newton method[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2408-2414.
7 刘盼盼, 李雷, 王浩宇. 压缩感知中基于变尺度法的贪婪重构算法的研究[J]. 通信学报, 2014, 35(12): 98-105, 115.
Liu Pan-pan, Li Lei, Wang Hao-yu. Research on greedy reconstruction algorithms of compressed sensing based on variable metric method[J]. Journal on Communications, 2014, 35 (12): 98-105, 115.
8 Mohimani H, Babaie-Zadeh M, Jutten C. A fast approach for over-complete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
9 Das S, Suganthan P N. Differential evolution: a survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31.
10 桂海霞, 张国富, 苏兆品, 等. 一种基于差分进化和编码修正的重叠联盟结构生成算法[J]. 控制理论与应用, 2018, 35(2): 215-233.
Gui Hai-xia, Zhang Guo-fu, Su Zhao-pin, et al. An overlapping coalition structure generation algorithm based on differential evolution and coding modification[J]. Control Theory and Application, 2018, 35(2): 215-233.
11 吴擎, 张春江, 高亮. 一种基于混合交叉的差分进化算法[J]. 华中科技大学学报:自然科学版, 2018, 46(5): 78-83, 105.
Wu Qing, Zhang Chun-jiang, Gao Liang. A hybrid cross-based differential evolution algorithm[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2018, 46(5): 78-83, 105.
12 周锋, 曾雪迎, 杨力华. 一种基于正则化的稀疏表示方法[J]. 数学学报, 2015, 58(4): 649-660.
Zhou Feng, Zeng Xue-ying, Yang Li-hua. A sparse representation method based on regularization[J]. Acta Mathematica Sinica, 2015, 58(4): 649-660.
[1] 赵宏伟,霍东升,王洁,李晓宁. 基于显著性检测的害虫图像分类[J]. 吉林大学学报(工学版), 2021, 51(6): 2174-2181.
[2] 窦慧晶,丁钢,高佳,梁霄. 基于压缩感知理论的宽带信号波达方向估计[J]. 吉林大学学报(工学版), 2021, 51(6): 2237-2245.
[3] 孙东明,胡亮,邢永恒,王峰. 基于文本融合的物联网触发动作编程模式服务推荐方法[J]. 吉林大学学报(工学版), 2021, 51(6): 2182-2189.
[4] 王生生,陈境宇,卢奕南. 基于联邦学习和区块链的新冠肺炎胸部CT图像分割[J]. 吉林大学学报(工学版), 2021, 51(6): 2164-2173.
[5] 任丽莉,王志军,闫冬梅. 结合黏菌觅食行为的改进多元宇宙算法[J]. 吉林大学学报(工学版), 2021, 51(6): 2190-2197.
[6] 林俊聪,雷钧,陈萌,郭诗辉,高星,廖明宏. 基于电影视觉特性的动态多目标实时相机规划[J]. 吉林大学学报(工学版), 2021, 51(6): 2154-2163.
[7] 姚引娣,贺军瑾,李杨莉,谢荡远,李英. 自构建改进型鲸鱼优化BP神经网络的ET0模拟计算[J]. 吉林大学学报(工学版), 2021, 51(5): 1798-1807.
[8] 赵宏伟,张子健,李蛟,张媛,胡黄水,臧雪柏. 基于查询树的双向分段防碰撞算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1830-1837.
[9] 张萌谡,刘春天,李希今,黄永平. 基于K⁃means聚类算法的绩效考核模糊综合评价系统设计[J]. 吉林大学学报(工学版), 2021, 51(5): 1851-1856.
[10] 曹洁,屈雪,李晓旭. 基于滑动特征向量的小样本图像分类方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1785-1791.
[11] 孙小雪,钟辉,陈海鹏. 基于决策树分类技术的学生考试成绩统计分析系统[J]. 吉林大学学报(工学版), 2021, 51(5): 1866-1872.
[12] 王春波,底晓强. 基于标签分类的云数据完整性验证审计方案[J]. 吉林大学学报(工学版), 2021, 51(4): 1364-1369.
[13] 欧阳丹彤,刘扬,刘杰. 故障响应指导下基于测试集的故障诊断方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1017-1025.
[14] 钱榕,张茹,张克君,金鑫,葛诗靓,江晟. 融合全局和局部特征的胶囊图神经网络[J]. 吉林大学学报(工学版), 2021, 51(3): 1048-1054.
[15] 朱小龙,谢忠. 基于机器学习的地理空间数据抽取算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1011-1016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!