吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 2268-2279.doi: 10.13229/j.cnki.jdxbgxb20200589
• 通信与控制工程 • 上一篇
Yuan-hong LIU1(),Pan-pan GUO1,Yan-sheng ZHANG1(),Xin LI2
摘要:
为了解决流形学习算法在欧式空间提取的特征不够显著的问题,提出了一种基于黎曼流形的稀疏图保持投影算法,并用于轴承的故障诊断。首先,计算原始数据的对称正定矩阵,构造对称正定流形(SPD流形)。其次,利用正则技术探索SPD流形中的稀疏结构,在此基础上分别建立样本的类内内在图和类间惩罚图,并通过图嵌入的方法实现数据的特征提取。实验结果表明,基于黎曼流形的稀疏图保持投影算法能提取到显著的特征。
中图分类号:
1 | Dong S J, Sun D H, Tang B P, et al. A fault diagnosis method for rotating machinery based on PCA and morlet kernel SVM[J]. Mathematical Problems in Engineering, 2014, 2014(10): No. 293878. |
2 | Zhao X L,Ming P J. Fault diagnosis of rolling bearing based on feature reduction with global-local margin fisher analysis[J]. Neurocomputing, 2018, 315: 447-464. |
3 | Gao Z W, Cecati C, Ding S X. A survey of fault diagnosis and fault-tolerant techniques—part I: fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757-3767. |
4 | Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6):1373-1396. |
5 | 李勇, 陈贺新, 赵刚, 等. 基于可变k近邻LLE数据降维的图像检索方法[J]. 吉林大学学报:工学版, 2008, 38(4): 946-949. |
Li Yong, Chen He-xin, Zhao Gang, et al. Image retrieval method based on variable k nearest neighbor [J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(4): 946-949. | |
6 | 孟广伟, 冯昕宇, 周立明,等. 基于降维算法的结构可靠性分析[J]. 吉林大学报:工学版, 2017, 47(1): 174-179. |
Meng Guang-wei, Feng Xin-yu, Zhou Li-ming, et al. Structural reliability analysis based on dimension reduction algorithm[J]. Journal of Jilin University (Engineering and Technology Edition),2017,47(1):174-179. | |
7 | Qiao L S, Chen S C, Tan X Y. Sparsity preserving projections with applications to face recognition[J]. Pattern Recognition, 2010, 43(1):331-341. |
8 | 殷俊, 杨万扣. 核稀疏保持投影及生物特征识别应用[J]. 电子学报, 2013, 41(4): 639-645. |
Yin Jun, Yang Wan-kou. Nuclear sparse preserving projection and application of biometric recognition[J]. Chinese Journal of Electronics, 2013, 41(4): 639-645. | |
9 | Yan S C, Dong X, Zhang B Y, et al. Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(1): 40-51. |
10 | Lou S J, Zhao X M, Chuang Y L, et al. Graph regularized sparsity discriminant analysis for face recognition[J]. Sensors and Actuators, 2016, 173: 290-297. |
11 | Zhang L M, Chen S C, Qiao L S. Graph optimization for dimensionality reduction with sparsity constraints[J]. Pattern Recognition, 2012, 45(3):1205-1210. |
12 | Yang W K, Wang Z Y, Sun C Y. A collaborative representation based projections method for feature extraction[J]. Pattern Recognition, 2015, 48(1): 20-27. |
13 | Ma Y, Wu X H. Discriminant sparse and collaborative preserving embedding for bearing fault diagnosis[J]. Neurocomputing, 2018, 313: 259-270. |
14 | 蔡金金, 刘博, 马跃进, 等. 多黎曼流形的判别分析与融合[J]. 河北农业大学学报, 2019, 42(1): 114-121. |
Cai Jin-jin, Liu Bo, Ma Yue-jin, et al. Discriminant analysis and fusion of multi Riemannian manifolds [J]. | |
Journal of Agricultural University of Hebei, 2019, 42(1): 114-121. | |
15 | Harandi M, Salzmann M, Hartley R. Dimensionality reduction on spd manifolds: the emergence of geometry-aware methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 40(1):48-62. |
16 | Xie X F, Zhu L Y, Gu Z H, et al. Classification of symmetric positive definite matrices based on bilinear isometric Riemannian embedding[J]. Pattern Recognition, 2019, 87: 94-105. |
17 | Cheng J, Ghosh A, Jiang T Z, et al. A Riemannian framework for orientation distribution function computing[J/OL]. [2020-06-03]. |
18 | Arsigny V, Fillard P, Pennec X, et al. Log-Euclidean metrics for fast and simple calculus on diffusion tensors[J]. Magnetic Resonance in Medicine, 2010, 56(2): 411-421. |
19 | Cherian A, Sra S, Banerjee A, et al. Jensen-bregman logdet divergence with application to efficient similarity search for covariance matrices[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(9): 2161-2174. |
20 | Arsigny V, Fillard P, Pennec X, et al. Geometric means in a novel vector space structure on symmetric positive-definite matrices[J]. Siam Journal on Matrix Analysis & Applications, 2011, 29(1): 328-347. |
21 | Lovri´c M, Min-Oo M, Ruh E A. Multivariate normal distributions parametrized as a Riemannian symmetric space[J]. Journal of Multivariate Analysis, 2000, 74(1): 36-48. |
22 | He X F, Yan S C, Hu Y X, et al. Face recognition using laplacianfaces[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2005, 27(3): 328-340. |
[1] | 钟辉,康恒,吕颖达,李振建,李红,欧阳若川. 基于注意力卷积神经网络的图像篡改定位算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1838-1844. |
[2] | 朱小龙,谢忠. 基于海量文本数据的知识图谱自动构建算法[J]. 吉林大学学报(工学版), 2021, 51(4): 1358-1363. |
[3] | 陈广秋,陈昱存,李佳悦,刘广文. 基于DNST和卷积稀疏表示的红外与可见光图像融合[J]. 吉林大学学报(工学版), 2021, 51(3): 996-1010. |
[4] | 徐涛,马克,刘才华. 基于深度学习的行人多目标跟踪方法[J]. 吉林大学学报(工学版), 2021, 51(1): 27-38. |
[5] | 何德峰,罗捷,舒晓翔. 自主网联车辆时滞反馈预测巡航控制[J]. 吉林大学学报(工学版), 2021, 51(1): 349-357. |
[6] | 王洪雁,邱贺磊,郑佳,裴炳南. 光照变化下基于低秩稀疏表示的视觉跟踪方法[J]. 吉林大学学报(工学版), 2020, 50(1): 268-277. |
[7] | 耿庆田, 于繁华, 王宇婷, 高琦坤. 基于特征融合的车型检测新算法[J]. 吉林大学学报(工学版), 2018, 48(3): 929-935. |
[8] | 董强, 刘晶红, 周前飞. 用于遥感图像拼接的改进SURF算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1644-1652. |
[9] | 尹明, 战荫伟, 裴海龙. 基于稀疏补算子学习的图像融合方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2052-2058. |
[10] | 肖钟捷. 基于小波空间特征谱熵的数字图像识别[J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998. |
[11] | 刘红,孙爽滋,王庆元,李延忠. 基于PSO的模拟电路故障信息特征提取[J]. 吉林大学学报(工学版), 2015, 45(2): 675-680. |
[12] | 潘海阳, 刘顺安, 姚永明. 基于深度信息的自主空中加油技术[J]. 吉林大学学报(工学版), 2014, 44(6): 1750-1756. |
[13] | 李学军, 杨晟, 李振举, 杨阿华, 刘涛. 与高精度单点匹配式定位算法[J]. 吉林大学学报(工学版), 2014, 44(4): 1197-1202. |
[14] | 查长军,韦穗,杨海蓉,丁大为. 基于稀疏表示的多类融合样本中特定目标识别[J]. 吉林大学学报(工学版), 2014, 44(3): 822-827. |
[15] | 顾播宇,孙俊喜,李洪祚,刘红喜,刘广文. 基于特征加权模块双方向二维主成分分析的人脸识别[J]. 吉林大学学报(工学版), 2014, 44(3): 828-833. |
|