吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (12): 2816-2826.doi: 10.13229/j.cnki.jdxbgxb20211448

• 车辆工程·机械工程 • 上一篇    下一篇

基于集合卡尔曼滤波的高机动救援车辆主动悬挂控制方法

李文航1(),倪涛2,赵丁选2(),张泮虹2,师小波2   

  1. 1.吉林大学 机械与航空航天工程学院,长春 130022
    2.燕山大学 车辆与能源学院,河北 秦皇岛 066004
  • 收稿日期:2021-12-30 出版日期:2022-12-01 发布日期:2022-12-08
  • 通讯作者: 赵丁选 E-mail:whli19@mails.jlu.edu.cn;zdx-yw@ysu.edu.cn
  • 作者简介:李文航(1994-),男,博士研究生. 研究方向:车辆动力学,液压系统. E-mail:whli19@mails.jlu.edu.cn
  • 基金资助:
    河北省创新群体项目(E2020203174);国家自然科学基金重点项目(U20A20332)

Active suspension control method of high mobility rescue vehicle based on ensemble Kalman filter

Wen-hang LI1(),Tao NI2,Ding-xuan ZHAO2(),Pan-hong ZHANG2,Xiao-bo SHI2   

  1. 1.College of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    2.School of Vehicle and Energy,Yanshan University,Qinhuangdao 066004,China
  • Received:2021-12-30 Online:2022-12-01 Published:2022-12-08
  • Contact: Ding-xuan ZHAO E-mail:whli19@mails.jlu.edu.cn;zdx-yw@ysu.edu.cn

摘要:

针对高机动救援车辆提出一种主动悬挂系统控制策略——基于集合卡尔曼滤波技术的模型预测控制策略(EnKF-MPC)。首先,对高机动救援车辆主动悬挂系统进行动力学建模,通过集合卡尔曼滤波技术完成车辆动力学系统和车载组合导航系统的数据融合,实现车辆位姿信息的精确估计;针对组合导航系统垂向位移误差较大的问题,设计了点云匹配算法,完成车辆垂向位移信息的精确评估。其次,提出了模型预测控制策略,将集合卡尔曼滤波算法得到的车辆位姿信息和车载雷达系统获取的道路信息作为系统输入对车辆主动悬挂系统进行实时控制。最后,进行了实车验证,结果表明,提出的车辆位姿估计算法垂向位移误差为±3.100 cm,俯仰角误差为±0.175°,侧倾角误差为±0.210°。相比于被动悬挂,提出的主动悬挂控制方法垂向位移均方根平均值降低37%,俯仰角度均方根平均值降低35%,侧倾角度均方根平均值降低35%,显著提升了车辆的行驶平顺性和操纵稳定性。

关键词: 公路运输, 主动悬挂系统, 集合卡尔曼滤波, 模型预测控制

Abstract:

A control strategy of active suspension systems was proposed for high-mobility rescue vehicles—model predictive control strategy based on ensemble Kalman Filter technology(EnKF-MPC). Firstly, dynamic model of the active suspension system was completed for high-mobility rescue vehicles. The data of the vehicle dynamic system and the vehicle-mounted positioning system were fused through the Ensemble Kalman Filter technology in order to realize the accurate estimation of the vehicle's pose information; Aiming at the problem of vertical positioning error for the vehicle positioning system, a point cloud matching algorithm was designed to complete the accurate evaluation of the vehicle's vertical direction information; in addition, a model predictive control strategy was proposed, which used the vehicle's pose information obtained by the ensemble Kalman filter algorithm and the road profile information obtained by the on-board lidar as system inputs to control the active suspension system of the vehicle to improve the ride comfort and handling stability of the vehicle. Finally, a real vehicle test was carried out. The research results show that the vertical direction error of the proposed vehicle pose estimation algorithm is about ±3.100?cm, the pitch angle error is about ±0.175°, and the roll angle error is about ±0.210°. Compared with the passive suspension system, the proposed active suspension control method reduced the root mean square value of the vertical displacement by 37%, the pitch angle by 35%, and the roll angle by 35%, which significantly improved the ride comfort and handling stability of the vehicle.

Key words: road transportation, active suspension system, ensemble Kalman filter, model predictive control

中图分类号: 

  • TP273

图1

系统总体流程示意图"

图2

9自由度车辆模型"

图3

点云匹配示意图"

表1

车辆参数"

符号含义数值单位
M车身质量3.6×104kg
T轮胎的宽度0.4m
H车体中心高度2.1m
V平均行驶速度5.00km/h
JYY轴转动惯量2.46×105kg·m2
JXX轴转动惯量1.12×105kg·m2
Kmi轮胎刚度系数1.90×106N/m

图4

实车测试环境"

图5

准确性实验测试"

表2

位姿评估实验误差对比"

路面类型参数未融合EnKF
图4(b)垂向误差/cm4.3002.950
俯仰角误差/(°)0.1950.155
侧倾角误差/(°)0.2160.190
图4(c)垂向误差/cm4.6303.100
俯仰角误差/(°)0.2160.175
侧倾角误差/(°)0.2530.210

图6

准确性实验测试"

图7

车辆悬架实验测试"

表3

悬架系统均方根平均值对比"

路面类型参数PASMPCEnKF-MPC
图4(c)垂向/m0.05350.04170.0338
俯仰角/(°)0.55000.42350.3575
侧倾角/(°)0.26500.19880.1722
1 高路路, 马飞, 周志鸿, 等. 应急救援车辆产品概况[J]. 凿岩机械气动工具, 2017(1):52-61.
Gao Lu-lu, Ma Fei, Zhou Zhi-hong, et al. Products overview of emergency rescue vehicle[J]. Rock Drilling Machinery & Pneumatic Tools, 2017(1): 52-61.
2 刘清河,和题,刘燕宁. 抢险救援车技术现状分析及展望[J]. 中国应急救援,2010(5):16-17.
Liu Qin-he, He Ti, Liu Yan-ning. Analysis and prospect of rescue vehicle technology[J]. China Emergency Rescue, 2010(5):16-17.
3 Xia Yuan-qing, Xu Ying-wei, Pu Fan, et al. Active disturbance rejection control for active suspension system of tracked vehicles[C]∥2016 IEEE International Conference on Industrial Technology, Taipei, C h i n a , 2016:No.16035629.
4 Waghmare D B, Asutkar V G, Patre B M. Extended disturbance observer based robust sliding mode control for active suspension system[J]. International Journal of Dynamics and Control, 2021, 9:1681-1694.
5 Pan Hui-hui, Sun Wei-chao, Gao Hui-jun, et al. Nonlinear tracking control based on extended state observer for vehicle active suspensions with performance constraints[J]. Mechatronics, 2015, 30: 363-370.
6 Sun W C, Gao H J, Kaynak O. Finite frequency Hcontrol for vehicle active suspension systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(2): 416-422.
7 Yamashita M, Fujimori K, Hayakawa K, et al. Application of H control to active suspension systems[J]. IFAC Proceedings Volumes, 1993, 26(2): 87-90.
8 Liu Lei, Li Xiang-sheng, Liu Yan-jun, et al. Neural network based adaptive event trigger control for a class of electromagnetic suspension systems[J]. Control Engineering Practice, 2021, 106: No.104675.
9 Ding Fei, Li Qian-long, Jiang Chao, et al. Event-triggered control for nonlinear leaf spring hydraulic actuator suspension system with valve predictive management[J]. Information Sciences, 2021, 551: 184-204.
10 Zhao F, Ge S, Tu F W, et al. Adaptive neural network control for active suspension system with actuator saturation[J]. IET Control Theory & Applications, 2016, 10(14): 1696-1705.
11 Huang Ying-bo, Na Jing, Wu Xing, et al. Adaptive control of nonlinear uncertain active suspension systems with prescribed performance[J]. ISA Transactions, 2015, 54:145-155.
12 Maleki N, Sedigh A K, Labibi B. Robust model reference adaptive control of active suspension system[C]∥2006 14th Mediterranean Conference on Control and Automation, Ancona, Italy, 2006: No.9189170.
13 李宇昊,赵又群. 基于双层控制策略的四轮独立转向无人驾驶汽车路径跟踪[J]. 江苏大学学报:自然科学版, 2022,43(4): 386-393.
Li Yu-hao, Zhao You-qun. Path tracking of 4WIS autonomous vehicle based on double layer control strategy[J]. Journal of Jiangsu University(Natural Science Edition), 2022,43(4): 386-393.
14 姚雪莲,丁东东,杨艺,等. 汽车驾驶机器人的自适应执行器故障补偿控制设计[J]. 江苏大学学报:自然科学版,2021, 42(6): 642-647.
Yao Xue-lian, Ding Dong-dong, Yang Yi, et al. Failure compensation control design of adaptive actuator for vehicle robot driver[J]. Journal of Jiangsu University(Natural Science Edition), 2021, 42(6): 642-647.
15 Bender E K. Optimum linear preview control with application to vehicle suspension[J]. J Basic Eng, 1968,90(2):213-221.
16 Iwata Y, Nakano M. Optimum preview control of vehicle air suspension[J]. Bull Jpn Soc Mech Eng, 1976,19(138):1485-1489.
17 Iwata Y, Nakano M. Optimal preview control of vehicle suspension[J]. Bull Jpn Soc Mech Eng, 1976, 19(129): 265-273.
18 Oraby W A H, Aly M A, El-Demerdash S M, et al. Influence of active suspension preview control on the vehicle lateral dynamics[C]∥SAE Technology Paper, 2007-01-2347.
19 Youn I, Tchamna R, Lee S H, et al. Preview suspension control for a full tracked vehicle[J]. International Journal of Automotive Technology, 2014, 15: 399-410.
20 Göhrle C, Schindler A. Road profile estimation and preview control for low band width active suspension systems[J]. IEEE/ASME Trans on Mechatronics, 2015, 20: 2299-2310.
21 Theunissen J, Sorniotti A, Gruber P. Regionless explicit model predictive control of active suspension systems with preview[J]. IEEE Transaction on Industrial Electronics, 2020, 67, 4877-4888.
22 Lee K T, Dai M J, Chuang C C. Temperature-compensated model for lithium-ion polymer batteries with extended Kalman filter state-of-charge estimation for an implantable charger[J]. IEEE Trans Ind Electron, 65(1): 589-596.
23 Fan R, Liu Y, Huang R, et al. Precise fault location on transmission lines using ensemble Kalman filter[J]. IEEE Trans Power Deliv, 33(6): 3252-3255.
24 Jiaolong Y, Hongdon L, Dylan C, et al. Go-ICP: a globally optimal solution to 3D ICP point-set registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11): 2241-2254.
25 姜晓通,戴宁,张长东,等. 基于“滑移”主方向自适应采样的ICP 算法优化研究[J]. 中国机械工程, 2014, 25(4): 497-502.
Jiang Xiao-tong, Dai Ning, Zhang Chang-dong, et al. Research on ICP algorithm optimization based on "slap" principal direction adaptive sampling[J]. China Mechanical Engineering, 2014, 25(4): 497-502.
[1] 胡云峰,于彤,杨惠策,孙耀. 低温环境下燃料电池启动优化控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 2034-2043.
[2] 吴文静,战勇斌,杨丽丽,陈润超. 考虑安全间距的合流区可变限速协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(6): 1315-1323.
[3] 彭浩楠,唐明环,查奇文,王伟忠,王伟达,项昌乐,刘玉龙. 自动驾驶汽车双车道换道最优轨迹规划方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2852-2863.
[4] 杨志军,高忠义,王丽君,黄观新,危宇泰. 面向刚柔耦合定位平台的模型预测控制算法[J]. 吉林大学学报(工学版), 2022, 52(12): 2806-2815.
[5] 成耀荣,杨谦,郑国华. 考虑碳排放的大型制造企业甩挂运输牵引车调度优化[J]. 吉林大学学报(工学版), 2021, 51(3): 893-899.
[6] 滕志军,张宇,李昊天,孙铭阳. 复杂路网的自适应D⁃S证据理论地图匹配算法[J]. 吉林大学学报(工学版), 2021, 51(2): 524-530.
[7] 贾超,徐洪泽,王龙生. 基于多质点模型的列车自动驾驶非线性模型预测控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1913-1922.
[8] 张云龙,郭阳阳,王静,梁东. 钢-混凝土组合梁的固有频率及其振型[J]. 吉林大学学报(工学版), 2020, 50(2): 581-588.
[9] 马苗苗,潘军军,刘向杰. 含电动汽车的微电网模型预测负荷频率控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1644-1652.
[10] 唐晓峰, 高峰, 徐国艳, 丁能根, 蔡尧, 刘建行. 基于智能空间-车框架理论的车辆行驶运动学状态的预测[J]. 吉林大学学报(工学版), 2015, 45(5): 1395-1401.
[11] 许芳1, 2, 靳伟伟2, 陈虹1, 2, 张振威2. 一种模型预测控制器的FPGA硬件实现[J]. 吉林大学学报(工学版), 2014, 44(4): 1042-1050.
[12] 石屹然, 田彦涛, 史红伟, 张立. 基于Modified Volterra模型的SI发动机空燃比非线性模型预测控制[J]. 吉林大学学报(工学版), 2014, 44(2): 538-547.
[13] 王国林, 傅乃霁, 张建, 裴紫嵘. 基于K-R动力学模型的子午线轮胎硫化过程仿真[J]. 吉林大学学报(工学版), 2013, 43(03): 659-664.
[14] 李刚, 宗长富, 陈国迎, 洪伟, 何磊. 线控四轮独立驱动轮毂电机电动车集成控制[J]. , 2012, 42(04): 796-802.
[15] 王晶, 张成春, 张春艳, 任露泉. 客车侧围格栅对发动机舱内热环境的影响 [J]. , 2012, (03): 563-568.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 史文库, 郑瑞清. 主动控制电致伸缩液压悬置隔振特性仿真[J]. 吉林大学学报(工学版), 2005, 35(02): 116 -0121 .
[2] 岳建伟, 姜忻良 . 速成墙板的宏观计算模型[J]. 吉林大学学报(工学版), 2006, 36(05): 824 -0828 .
[3] 商延赓;孙大千;郎波;张显斌. 金属间化合物对Sn-Ag-Cu无铅钎料钎焊接头性能的影响[J]. 吉林大学学报(工学版), 2006, 36(06): 846 -0850 .
[4] 彭其渊,徐进,郑升宝,邵毅明,邓天民. 隧道洞口路面两种材料交替对行车的影响及交替位置优化[J]. 吉林大学学报(工学版), 2009, 39(06): 1497 -1503 .
[5] 黄志强, 王树勋, 王波. 一种近场源四维参数的估计方法[J]. 吉林大学学报(工学版), 2006, 36(01): 72 -0076 .
[6] 王生生, 王兆丹, 刘大有, 李昕, 张慧杰. 有向线对象细节拓扑关系模型[J]. 吉林大学学报(工学版), 2009, 39(05): 1292 -1296 .
[7] 鲁金忠, 罗开玉, 盛叶健, 殷苏民, 张朝阳, 钟俊伟. 激光穿透液晶掩膜的透光机理及损伤阈[J]. 吉林大学学报(工学版), 2010, 40(05): 1288 -1291 .
[8] 刘晓晓,姚俊,马光胜 . VLSI电路中时序特性分析改进方法[J]. 吉林大学学报(工学版), 2007, 37(03): 621 -0624 .
[9] 姚国凤,高雪飞. 重 频 结 构 可 控 性[J]. 吉林大学学报(工学版), 2008, 38(06): 1359 -1365 .
[10] 于繁华, 刘仁云, 周春光. 基于残余力向量和粒子群算法的结构损伤识别[J]. 吉林大学学报(工学版), 2010, 40(增刊): 339 -0343 .