吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (3): 564-571.doi: 10.13229/j.cnki.jdxbgxb20200843

• 交通运输工程·土木工程 • 上一篇    

终点不确定条件下网约车合乘匹配模型及算法

贾洪飞(),邵子函,杨丽丽()   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2020-11-03 出版日期:2022-03-01 发布日期:2022-03-08
  • 通讯作者: 杨丽丽 E-mail:jiahf@jlu.edu.cn;yanglili@jlu.edu.cn
  • 作者简介:贾洪飞(1969-),男,教授,博士生导师. 研究方向:交通网络分析. E-mail:jiahf@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB1601301)

Ride⁃sharing matching model and algorithm of online car⁃hailing under condition of uncertain destination

Hong-fei JIA(),Zi-han SHAO,Li-li YANG()   

  1. College of Transportation,Jilin University,Changchun 130022,China
  • Received:2020-11-03 Online:2022-03-01 Published:2022-03-08
  • Contact: Li-li YANG E-mail:jiahf@jlu.edu.cn;yanglili@jlu.edu.cn

摘要:

为了改善出租车行业高需求和低载客率的现象,本文对运营网约车合乘问题进行了研究。综合考虑车辆运输里程、乘客周转量、出行时间以及出行费用建立了单车辆合乘匹配数学模型。基于公平原则,考虑了司机和乘客双边利益,提出了一种费率计算方法。基于路径拟合度进行乘客聚类,以Dijkstra算法为基础提出了带有必经节点的分路段最短路径算法。算例结果表明:相比传统出租车运营模式,网约车合乘对于提高运输效率、降低运输成本具有显著效果。

关键词: 交通运输系统工程, 城市交通, 车辆合乘, 路径拟合度, 路径优化

Abstract:

To improve the situation of high demand and low occupancy rate of taxis, the study focuses on the problem of online ride-sharing. Considering the turnover of passengers, vehicle transportation mileage, travel time, and travel cost, a mathematical model of single-vehicle carpooling matching was established. Based on the principle of fairness and considering the bilateral interests of drivers and passengers, a rate calculation method was proposed. Passenger clustering is conducted with the path fitting degree as its basis. Based on the Dijkstra algorithm, the shortest path algorithm by section with obligatory nodes was proposed. Simulation results show that, compared with the traditional taxi operation mode, online taxi-sharing has a significant effect on improving transportation efficiency and reducing transportation cost.

Key words: engineering of communication and transportation system, urban traffic, ride-sharing, path fitting degree, path optimization

中图分类号: 

  • U492.2

图1

乘客起讫点与车辆行驶路径的拟合关系"

图2

需求节点有序调整示意图"

图3

算法流程图"

图4

研究区域道路网"

图5

车辆及乘客位置图"

表1

乘客需求信息表"

乘客编号起点及时间窗终点及时间窗
A4,[51048,[29,44]
B10,[30,35]5,[43,53]
C14,[15,20]50,[36,46]
D19,[10,35]39,[31,46]
E23,[20,25]5,[37,52]
F33,[20,30]1,[43,58]
G38,[25,35]51,[47,52]
H44,[15,20]7,[39,54]
I49,[15,20]10,[38,48]
J52,[101513,[32,47]

表2

路径拟合度表"

乘客编号路径拟合度乘客编号路径拟合度
A1.000F-0.079
B0.024G0.225
C0.116H-0.177
D0.353I-0.082
E-0.082J-0.028

图6

车辆合乘行驶路线图"

图7

车辆合乘行驶最终路线图"

表3

乘客搭乘里程对比表"

乘客编号合乘里程/km非合乘里程/km
乘客周转量/(人·km)36.530.7
A9.17.2
D2.32.3
G6.74.5
I7.07.0
F4.44.4
B7.05.3

表4

乘客乘车费用对比表"

乘客编号合乘费用/元非合乘费用/元
总计62.595.7
A11.322.5
D8.08.0
G9.117.2
I12.517.9
F8.012.2
B13.617.9

图8

乘客聚类效果图"

1 Herbawi W, Weber M. The ride matching problem with time windows in dynamic ridesharing: A model and a genetic algorithm[C]∥Evolutionary Computation, Brisbane, QLD, Australia, 2012: 1-8.
2 Naor M. On fairness in the carpool problem[J]. Journal of Algorithms, 2005, 55(1): 93-98.
3 Lee K T, Wu P J, Wang S H. The planning and design of taxi pooling on feeder system[C]∥2004 IEEE International Conference on Networking, Sensing and Control, Taipei, Taiwan, China, 2004: 376-381.
4 Ma S, Zheng Y, Wolfson O. T-share: a large-scale dynamic taxi ridesharing service[C]∥2013 IEEE 29th International Conference on Data Engineering, Brisbane, QLD, Australia, 2013: 410-421.
5 Lauri H. An adaptive insertion algorithm for the single-vehicle dial-a-ride problem with narrow time windows[J]. European Journal of Operational Research, 2011, 209(1): 11-22.
6 Alonso-Mora J, Samaranayake S, Wallar A, et al. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(3): 462-467.
7 沈弼龙, 赵颖, 黄艳, 等. 大数据背景下动态共乘的研究进展[J]. 计算机研究与发展, 2017, 54(1): 34-43.
Shen Bi-long, Zhao Ying, Huang Yan, et al. Survey on dynamic ride sharing in big data era[J]. Journal of Computer Research and Development, 2017, 54(1): 34-43.
8 覃运梅, 石琴. 出租车合乘模式的探讨[J]. 合肥工业大学学报: 自然科学版, 2006, 29(1): 77-79, 101.
Qin Yun-mei, Shi Qin. Research on the combined-taxi mode[J]. Journal of Hefei University of technology (Natural Science), 2006, 29(1): 77-79, 101.
9 吴玥琳, 袁振洲, 陈秋芳, 等. 考虑轨迹相似度的综合客运枢纽出租车合乘方法研究[J]. 交通运输系统工程与信息, 2020, 20(2): 188-195.
Wu Yue-lin, Yuan Zhen-zhou, Chen Qiu-fang, et al. Taxi pooling method of urban integrated passenger transport hub with trajectory similarity[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 188-195.
10 宋超超, 王洪国, 邵增珍, 等. 一种求解多车辆合乘匹配问题的适应性算法[J]. 计算机科学, 2013, 40(2): 222-228.
Song Chao-chao, Wang Hong-guo, Shao Zeng-zhen, et al. Adaptive algorithm for MRMP[J]. Computer Science, 2013, 40(2): 222-228.
11 唐方慧. 出租车合乘路径选择及费率优化问题研究[D]. 兰州:兰州交通大学交通运输学院, 2016.
Tang Fang-hui. The research on the optimization of taxi ride-sharing route and rate[D]. Lanzhou: School of Traffic and Transportation, Lanzhou Jiaotong University, 2016.
12 卢雨婷, 李登峰, 胡勋锋. 基于破产模型的出租车合乘定价方法[J]. 交通运输系统工程与信息, 2017, 17(4): 7-12.
Lu Yu-ting, Li Deng-feng, Hu Xun-feng. A pricing method for ride-sharing taxi based on the bankruptcy model[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 7-12.
13 鹿应荣, 杨印生, 吕锋. 基于模糊聚类分析的车辆优化调度[J]. 吉林大学学报: 工学版, 2006, 36(): 147-151.
Lu Ying-rong, Yang Yin-sheng, Lyu Feng. Optimal vehicle routing problem based on fuzzy clustering analysis[J] Journal of Jilin University (Engineering and Technology Edition), 2006, 36(Sup.2): 147-151.
14 赵宏伟, 刘宇琦, 董立岩, 等.智能交通混合动态路径优化算法[J].吉林大学学报:工学版, 2018, 48(4): 1214-1223.
Zhao Hong-wei, Liu Yu-qi, Dong Li-yan, Wang Yu, Liu Pei. Dynamic route optimization algorithm based on hybrid in ITS[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(4): 1214-1223.
15 高德地图. 2019年Q3中国主要城市交通分析报告[Z].
[1] 冯天军,孙学路,黄家盛,田秀娟,宋现敏. 基于三种过街方式的两相位信号交叉口延误[J]. 吉林大学学报(工学版), 2022, 52(3): 550-556.
[2] 李先通,全威,王华,孙鹏程,安鹏进,满永兴. 基于时空特征深度学习模型的路径行程时间预测[J]. 吉林大学学报(工学版), 2022, 52(3): 557-563.
[3] 薛锋,何传磊,黄倩,罗建. 多式轨道交通网络的耦合协调度[J]. 吉林大学学报(工学版), 2021, 51(6): 2040-2050.
[4] 杨世军,裴玉龙,潘恒彦,程国柱,张文会. 城市公交车辆驻站时间特征分析及预测[J]. 吉林大学学报(工学版), 2021, 51(6): 2031-2039.
[5] 贾彦峰,曲大义,林璐,姚荣涵,马晓龙. 基于运行轨迹的网联混合车流速度协调控制[J]. 吉林大学学报(工学版), 2021, 51(6): 2051-2060.
[6] 陆文琦,周天,谷远利,芮一康,冉斌. 基于张量分解理论的车道级交通流数据修复算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1708-1715.
[7] 卢凯,吴蔚,林观荣,田鑫,徐建闽. 基于KNN回归的客运枢纽聚集人数组合预测方法[J]. 吉林大学学报(工学版), 2021, 51(4): 1241-1250.
[8] 彭博,张媛媛,王玉婷,唐聚,谢济铭. 基于自动编码机-分类器的视频交通状态自动识别[J]. 吉林大学学报(工学版), 2021, 51(3): 886-892.
[9] 张健,吴坤润,杨敏,冉斌. 智能网联环境下交叉口双环自适应控制模型[J]. 吉林大学学报(工学版), 2021, 51(2): 541-548.
[10] 王殿海,沈辛夷,罗小芹,金盛. 车均延误最小情况下的相位差优化方法[J]. 吉林大学学报(工学版), 2021, 51(2): 511-523.
[11] 宋现敏,张明业,李振建,王鑫,张亚南. 动态公交专用道的设置及其仿真分析评价[J]. 吉林大学学报(工学版), 2020, 50(5): 1677-1686.
[12] 孙宝凤,姜源,郑黎黎,崔万坤,任欣欣. 变覆盖半径下城市轨道交通维护保障网络设计模型[J]. 吉林大学学报(工学版), 2020, 50(2): 526-534.
[13] 贾洪飞,丁心茹,杨丽丽. 城市潮汐车道优化设计的双层规划模型[J]. 吉林大学学报(工学版), 2020, 50(2): 535-542.
[14] 尹超英,邵春福,王晓全,熊志华. 考虑空间异质性的建成环境对通勤方式选择的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 543-548.
[15] 张大伟,祝海涛. 考虑行人差异性的人群疏散最优决策理论模型[J]. 吉林大学学报(工学版), 2020, 50(2): 549-556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!