吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (3): 633-639.doi: 10.13229/j.cnki.jdxbgxb20200871

• 计算机科学与技术 • 上一篇    

基于多尺度融合卷积神经网络的熔解曲线有效性分类

李向军1,2(),涂洁莹1,赵志宾1()   

  1. 1.南昌大学 软件学院,南昌 330047
    2.南昌大学 计算机科学与技术系,南昌 330031
  • 收稿日期:2020-11-11 出版日期:2022-03-01 发布日期:2022-03-08
  • 通讯作者: 赵志宾 E-mail:lxjun_alex@163.com;zhaozhibin@ncu.edu.cn
  • 作者简介:李向军(1972-),男,教授,硕士. 研究方向:人工智能及其应用.E-mail:lxjun_alex@163.com
  • 基金资助:
    国家自然科学基金项目(61672259);江西省科技创新平台项目(20181BCD40005);江西省主要学科学术和技术带头人项目(20172BCB22030);江西省自然科学基金项目(20192BAB207019);江西省研究生创新基金项目(YC2020-S028);江西省大学生实践创新训练项目(202110403068);江西省教改重点课题项目(JXJG-2020-1-2)

Validity classification of melting curve based on multi⁃scale fusion convolutional neural network

Xiang-jun LI1,2(),Jie-ying TU1,Zhi-bin ZHAO1()   

  1. 1.College of Software,Nanchang University,Nanchang 330047,China
    2.Department of Computer Science and Technology,Nanchang University,Nanchang 330031,China
  • Received:2020-11-11 Online:2022-03-01 Published:2022-03-08
  • Contact: Zhi-bin ZHAO E-mail:lxjun_alex@163.com;zhaozhibin@ncu.edu.cn

摘要:

针对熔解曲线图像中峰值分类的问题,提出了一种基于多尺度融合的卷积神经网络(CNN)分类模型。首先,将通过空洞卷积获取到的多尺度上下文信息与残差模块提取到的特征信息相融合,弥补了深层网络丢失全局信息的缺点。不同于传统卷积采用单一卷积核的方式,本文使用了一种卷积核的权值随输入而变化的动态滤波器,从而提高了网络学习的准确性。此外,为了提高模型的泛化能力,本文创建了熔解曲线的数据集,其中包括平衡数据集和不平衡数据集。将6个基于深度学习的分类方法与本文方法进行比较,结果表明本文方法在客观评价指标上明显优于其他方法。

关键词: 图像分类, 卷积神经网络, 多尺度融合, 熔解曲线, 动态滤波器

Abstract:

Aiming at the issue of peak classification in melting curve images, a convolutional neural network (CNN) classification model based on multi-scale fusion is proposed. First, the multi-scale context information obtained through dilated convolution is integrated with the feature information extracted from the residual module, which makes up for the shortcoming of the deep network that loses the global information. Then, different from traditional convolution with constant convolution kernel, a dynamic filter that changes with the input is used to make the network learning more accurate. In addition, in order to train the model, a dataset of melting curves is created, which includes a balanced dataset and an unbalanced dataset. This paper uses six classification-based evaluation indicators to compare with six classification methods based on deep learning. Experimental results show that the proposed method is significantly better than other methods in objective evaluation indicators.

Key words: image classification, convolutional neural networks, multi-scale fusion, melting curve, dynamic filter

中图分类号: 

  • TP391

图1

改进的残差网络结构"

图2

本文网络的总体结构"

表1

空洞卷积层数确定的实验结果"

方法AccuracySpecificitySensitivity
ResNet-10.92310.86330.9425
ResNet-20.92530.86410.9434
ResNet-30.92720.86480.9421
ResNet-1_20.92920.87090.9503
ResNet-1_30.93010.87340.9527
ResNet-1_2_30.93250.87210.9532

表2

不同层数ResNet的实验结果"

方法AccuracySpecificitySensitivity
ResNet-180.93250.87210.9532
ResNet-340.94050.87930.9576
ResNet-500.94180.88370.9583
ResNet-1010.94210.88430.9590
ResNet-1520.94250.88480.9595

表3

平衡数据集实验结果"

方法AccuracyPrecisionSpecificitySensitivityF1MCC
VGG0.90710.93650.84640.93210.93430.7758
SqueezeNet0.91420.93240.84590.94450.93840.7970
GoogLeNet0.91790.95280.87760.93320.94290.7978
MnasNet0.90750.94950.87200.92110.93500.7754
DenseNet0.91010.94570.86190.92860.93710.7797
MobileNetV30.91200.92210.83710.94880.93520.7986
本文0.94250.96230.88480.95950.96190.8454

图3

不同数据集的实验结果"

1 Jiang Y, He L, Wu P, et al. Simultaneous identification of ten bacterial pathogens using the multiplex ligation reaction based on the probe melting curve analysis[J]. Scientific Reports, 2017, 7(1): 1-9.
2 Ahmed F E, Gouda M M, Hussein L A, et al. Role of melt curve analysis in interpretation of Nutrigenomics' MicroRNA expression data[J]. Cancer Genomics-Proteomics, 2017, 14(6): 469-481.
3 Min S, Lee B, Yoon S. Deep learning in bioinformatics[J]. Briefings in bioinformatics, 2017, 18(5): 851-869.
4 Tang B, Pan Z, Yin K, et al. Recent advances of deep learning in bioinformatics and computational biology[J]. Frontiers in Genetics, 2019, 10: 214.
5 赵宏伟, 刘晓涵, 张媛, 等. 基于关键点注意力和通道注意力的服装分类算法[J]. 吉林大学学报:工学版, 2020, 50(5): 1765-1770.
Zhao Hong-wei, Liu Xiao-han, Zhang Yuan, et al. Clothing classification algorithm based on landmark attention and channel attention[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1765-1770.
6 Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks[J]. Radiology, 2017, 284(2): 574-582.
7 陈绵书, 于录录, 苏越,等. 基于卷积神经网络的多标签图像分类[J]. 吉林大学学报:工学版, 2020, 50(3):1077-1084.
Chen Mian-shu, Yu Lu-lu, Su Yue, et al. Multi-label images classification based on convolutional neural network [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 1077-1084.
8 Wang F, Jiang M, Qian C, et al. Residual attention network for image classification[C]∥Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3156-3164.
9 Phan H, Andreotti F, Cooray N, et al. Joint classification and prediction CNN framework for automatic sleep stage classification[J]. IEEE Transactions on Biomedical Engineering, 2018, 66(5): 1285-1296.
10 He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2016: 770-778.
11 Yu F, Koltun V, Funkhouser T. Dilated residual networks[C]∥Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 472-480.
12 Jia X, De Brabandere B, Tuytelaars T, et al. Dynamic filter networks[C]∥ Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 667-675.
13 Landi F, Baraldi L, Corsini M, et al. Embodied vision-and-language navigation with dynamic convolutional filters[J]. arXiv Preprint arXiv:, 2019.
14 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5998-6008.
15 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv Preprint arXiv:, 2014.
16 Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: alexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size[J]. arXiv Preprint arXiv:, 2016.
17 Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]∥Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1-9.
18 Tan M X, Chen B, Pang R M, et al. Mnasnet: platform-aware neural architecture search for mobile[C]∥Proceedings of the 32nd IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2820-2828.
19 Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]∥Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, South Korea, 2019: 1314-1324.
20 Howard A G, Zhu M, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J]. arXiv Preprint arXiv:, 2017.
21 Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]∥Proceedings of the 31st IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510-4520.
22 Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]∥Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4700-4708.
[1] 李先通,全威,王华,孙鹏程,安鹏进,满永兴. 基于时空特征深度学习模型的路径行程时间预测[J]. 吉林大学学报(工学版), 2022, 52(3): 557-563.
[2] 高文志,王彦军,王欣伟,张攀,李勇,董阳. 基于卷积神经网络的柴油机失火故障实时诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 417-424.
[3] 张龙,徐天鹏,王朝兵,易剑昱,甄灿壮. 基于卷积门控循环网络的齿轮箱故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 368-376.
[4] 段亮,宋春元,刘超,魏苇,吕成吉. 基于机器学习的高速列车轴承温度状态识别[J]. 吉林大学学报(工学版), 2022, 52(1): 53-62.
[5] 钟辉,康恒,吕颖达,李振建,李红,欧阳若川. 基于注意力卷积神经网络的图像篡改定位算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1838-1844.
[6] 王德兴,吴若有,袁红春,宫鹏,王越. 基于多尺度注意力融合和卷积神经网络的水下图像恢复[J]. 吉林大学学报(工学版), 2021, 51(4): 1396-1404.
[7] 许骞艺,秦贵和,孙铭会,孟诚训. 基于改进的ResNeSt驾驶员头部状态分类算法[J]. 吉林大学学报(工学版), 2021, 51(2): 704-711.
[8] 谌华,郭伟,闫敬文,卓文浩,吴良斌. 基于深度学习的SAR图像道路识别新方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1778-1787.
[9] 车翔玖,董有政. 基于多尺度信息融合的图像识别改进算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1747-1754.
[10] 王柯俨,王迪,赵熹,陈静怡,李云松. 基于卷积神经网络的联合估计图像去雾算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1771-1777.
[11] 李志军,杨楚皙,刘丹,孙大洋. 基于深度卷积神经网络的信息流增强图像压缩方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1788-1795.
[12] 刘国华,周文斌. 基于卷积神经网络的脉搏波时频域特征混叠分类[J]. 吉林大学学报(工学版), 2020, 50(5): 1818-1825.
[13] 车翔玖,刘华罗,邵庆彬. 基于Fast RCNN改进的布匹瑕疵识别算法[J]. 吉林大学学报(工学版), 2019, 49(6): 2038-2044.
[14] 周柚,杨森,李大琳,吴春国,王岩,王康平. 基于现场可编程门电路的人脸检测识别加速平台[J]. 吉林大学学报(工学版), 2019, 49(6): 2051-2057.
[15] 赵宏伟,王鹏,范丽丽,胡黄水,刘萍萍. 相似性保持实例检索方法[J]. 吉林大学学报(工学版), 2019, 49(6): 2045-2050.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!