吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (8): 1817-1825.doi: 10.13229/j.cnki.jdxbgxb20210175

• 交通运输工程·土木工程 • 上一篇    

BRBs加固震损装配式混凝土框架结构抗震性能试验

陈伟宏1(),陈艳2,洪秋榕1,崔双双2(),颜学渊1   

  1. 1.福州大学 土木工程学院,福州 350108
    2.福建工程学院 土木工程学院,福州 350118
  • 收稿日期:2021-03-08 出版日期:2022-08-01 发布日期:2022-08-12
  • 通讯作者: 崔双双 E-mail:chenweihong1980@163.com;cshuangshuang@163.com
  • 作者简介:陈伟宏(1980-),男,副研究员,博士. 研究方向:钢筋混凝土结构抗震与抗倒塌.E-mail: chenweihong1980@163.com
  • 基金资助:
    国家自然科学基金项目(51678209);福建省自然科学基金项目(2021J011065);福州市科技计划项目(2018-G-52)

Seismic performance of earthquake⁃damaged precast concrete frame structures strengthened with BRBs

Wei-hong CHEN1(),Yan CHEN2,Qiu-rong HONG1,Shuang-shuang CUI2(),Xue-yuan YAN1   

  1. 1.College of Civil Engineering,Fuzhou University,Fuzhou 350108,China
    2.College of Civil Engineering,Fujian University of Technology,Fuzhou 350118,China
  • Received:2021-03-08 Online:2022-08-01 Published:2022-08-12
  • Contact: Shuang-shuang CUI E-mail:chenweihong1980@163.com;cshuangshuang@163.com

摘要:

为研究防屈曲支撑加固震损破坏程度在中等以内的装配式混凝土框架结构的抗震性能和支撑的滞回耗能,设计并完成了一榀1/2比例装配式混凝土框架结构的拟静力预损试验,采用防屈曲支撑对震损结构进行加固,并对加固后的结构再次进行拟静力试验。观察和记录了加固前、后试件的试验现象和破坏特征,对结构的承载能力、延性系数、耗能能力等进行了对比分析。试验结果表明:加固后,结构的承载力提高了51.3%、耗能增加1.68倍,延性系数恢复到结构初始延性的88%,结构承载能力和耗能能力得到显著提升,延性系数得到较好恢复;拟静力加载下,防屈曲支撑加固的震损结构破坏模式为支撑梁铰破坏模式。震损的装配式混凝土框架结构仍具有改造价值,采用防屈曲支撑对震损装配式混凝土框架结构进行加固的方法是有效的。

关键词: 土木工程, 震损PC框架结构, 拟静力试验, 破坏模式, 防屈曲支撑

Abstract:

The pseudo-static test was conducted to investigate the seismic behavior of earthquake-damaged precast concrete(PC) frame structures (the earthquake-damaged frame structures are within moderate damage) strengthened with buckling-restrained braces(BRBs) and to analyze the hysteretic energy dissipation of BRBs. A half-scale PC frame structure was fabricated. After it was pre-damaged by quasi-static loading, it was strengthened with BRBs, and then tested under pseudo-static loading again. The structural experimental phenomena and failure characteristics were observed and recorded. The structural seismic behavior, including bearing capacity, ductility, and energy dissipation, was evaluated. The test results show that after repairing with BRBs, the bearing capacity and energy dissipation can be significantly improved (the ultimate bearing capacity and energy dissipation increased by 51.3% and 68%, respectively), other seismic behavior like the ductility coefficient can be recovered well (ductility coefficient restored to 88% of the initial ductility of the structure); the earthquake-damaged PC frame structure strengthened with BRBs under pseudo-static loading exhibited a failure mode of beam-hinge with BRBs. The earthquake-damaged PC frame structures still had retrofit value and that the above retrofitting method was effective.

Key words: civil engineering, earthquake-damaged precast concrete frame structure, pseudo-static test, failure mode, buckling-restrained braces

中图分类号: 

  • TU375.4

图1

梁柱配筋图"

图2

支撑尺寸图"

图3

结构加固过程"

表1

钢筋强度值"

钢筋 种类直径 /mm屈服强度 /MPa抗拉强度 /MPa屈服应变 /10-6弹性模量/(N·mm-2
HPB300831040515272.03×105
HRB4001240353019552.02×105
HRB4002043562920612.11×105

图4

加载图"

表2

加载位移控制值"

位移值/mm层间位移角循环次数
±11/15001
±21/7501
±31/5003
±51/3003
±71/2003
±101/1503
±151/1003
±201/753
±251/603
±301/503
±351/421
±401/371
±451/331
±501/301

图5

R区梁最终破坏"

图6

R区柱最终破坏"

图7

L区预埋件混凝土破坏"

图8

支撑最终破坏"

图9

滞回曲线"

图10

骨架曲线"

图11

刚度曲线"

表3

延性系数"

试件加载方向屈服位移 /mm屈服荷载 /kN

延性

系数

PC1框架16.59288.92.70
16.71-275.4
PC2框架18.27430.32.37
19.71-369.5

图12

结构耗能指标"

图13

耗能值"

图14

耗能比"

图15

BRB-R滞回曲线"

图16

BRB-L滞回曲线"

表4

滞回面积"

工况层间 位移角BRB滞回面积/(kN·mm)PC2滞回面积/(kN·mm)比例/%
±3mm1/50017639245
±5mm1/3007441 09468
±7mm1/2001 1661 97759
±10mm1/1501 5673 48345
±15mm1/1002 7946 65442
±20mm1/754 3129 80144
±25mm1/606 06012 62548
±30mm1/506 97913 42252
1 匡亚川, 宋哲轩, 刘胤虎, 等. 新型装配式双舱综合管廊力学性能试验[J]. 吉林大学学报: 工学版, 2022, 52(3): 596-603.
Kuang Ya-chuan, Song Zhe-xuan, Liu Yin-hu, et al. Mechanical performance test of a new type of assembled double-cabin integrated pipe corridor[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 596-603.
2 陈俊, 王韶纤, 胥卉, 等. 负弯矩作用下可拆卸预制装配式组合梁力学性能试验[J]. 吉林大学学报: 工学版, 2022,52(3): 604-614.
Chen Jun, Wang Shao-xian, Xu Hui, et al. Test on mechanical properties of detachable prefabricated composite beam under negative bending moment[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 604-614.
3 高向宇, 杜海燕, 张慧, 等. 国标Q235热轧钢材防屈曲支撑抗震性能试验研究[J]. 建筑结构, 2008, 38(3): 91-95.
Gao Xiang-yu, Du Hai-yan, Zhang Hui, et al. Experimental study on seismic performance of buckling-restrained brace made of hot-rolled steel in mainland China[J]. Building Structure, 2008, 38(3): 91-95.
4 Yi Q, Francesca B, Edoardo M M, et al. Full-scale hybrid test for realistic verification of a seismic upgrading technique of RC frames by BRBs[J]. Earthquake Engineering and Structural Dynamics, 2020, 49(14): 1452-1472.
5 Qu Z, Kishiki S, Sakata H, et al. Subassemblage cyclic loading test of RC frame with buckling restrained braces in zigzag configuration[J]. Earthquake Engineering and Structural Dynamics, 2013, 42(7): 1087-1102.
6 Akcelyan S, Lignos D G. Rate-dependent model for simulating the hysteretic behavior of low-yield stress buckling-restrained braces under dynamic excitations[J]. Engineering Structures, 2021, 230: 111659.
7 Li B B, Wang J F, Yang J, et al. Pseudo-dynamic response and analytical evaluation of blind bolted CFT frames with BRBs[J]. Journal of Constructional Steel Research, 2020, 166: 101513.
8 欧阳煜, 张文杰. 防屈曲耗能支撑加固钢筋混凝土框架抗震效果分析[J]. 工业建筑, 2009, 39(11): 118-121, 128.
Yu Ou-yang, Zhang Wen-jie. Analysis of the seismic effects for the seismic retrofit of a concrete frame with buckling-restrained braces[J]. Industrial Construction, 2009, 39(11): 118-121, 128.
9 王静峰, 王新乐, 李贝贝, 等. 屈曲约束支撑装配式混凝土框架结构抗震性能试验研究[J]. 土木工程学报, 2018, 51(12): 72-80.
Wang Jing-feng, Wang Xin-le, Li Bei-bei, et al. Experimental studies on seismic performance of prefabricated concrete frame structures with buckling-restrained braces[J]. China Civil Engineering Journal, 2018, 51(12): 72-80.
10 乔金丽, 侯双, 任泽民, 等. 屈曲约束支撑钢筋混凝土框架结构抗震性能试验研究[J]. 建筑结构, 2017, 47(8): 29-32, 58.
Qiao Jin-li, Hou Shuang, Ren Ze-min, et al. Experimental study on seismic performance of RC frame structure with buckling restrained brace[J]. Building Structure, 2017, 47(8): 29-32, 58.
11 王婷, 杨勇, 刘如月, 等. 防屈曲支撑加固震后钢筋混凝土框架抗震性能试验研究[J]. 工业建筑, 2016, 46(4): 18-25.
Wang Ting, Yang Yong, Liu Ru-yue, et al. Seismic performance of reinforced-concrete frames retrofitted with buckling-restrained braces after earthquake[J]. Industrial Construction, 2016, 46(4): 18-25.
[1] 罗小博,宋彧,王腾,金子秋,谢国鑫. 新型分形防屈曲支撑参数设计及受力性能[J]. 吉林大学学报(工学版), 2022, 52(7): 1607-1619.
[2] 何兆益,李金凤,周文,官志桃. 多孔沥青混合料的动态模量及其预估模型[J]. 吉林大学学报(工学版), 2022, 52(6): 1375-1385.
[3] 谷拴成,聂红宾. 极温冻融-荷载作用下碳纤维复合材料修复试件损伤分析[J]. 吉林大学学报(工学版), 2021, 51(6): 2108-2120.
[4] 周靖,黎亚军,赵卫锋,罗宗健,补国斌. 胶合竹板-钢管约束收尘石粉混凝土柱的偏压性能[J]. 吉林大学学报(工学版), 2021, 51(6): 2096-2107.
[5] 张广泰,张路杨,邢国华,曹银龙,易宝. 钢-聚丙烯混杂纤维混凝土剪力墙抗震性能[J]. 吉林大学学报(工学版), 2021, 51(3): 946-955.
[6] 许卫晓,程扬,杨伟松,鞠佳昌,于德湖. RC框架⁃抗震墙并联结构体系拟静力试验[J]. 吉林大学学报(工学版), 2021, 51(1): 268-277.
[7] 单德山,张潇,顾晓宇,李乔. 斜拉索悬链线构形的伸长量解析计算方法[J]. 吉林大学学报(工学版), 2021, 51(1): 217-224.
[8] 刘柳,冯卫星. 基于NNBR模型的隧道盾构施工地表沉降实测与计算分析[J]. 吉林大学学报(工学版), 2021, 51(1): 245-251.
[9] 薛素铎,鲁建,李雄彦,刘人杰. 跳格布置对环形交叉索桁结构静动力性能的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1687-1697.
[10] 王勃,董元正,董丽欣. 基于短期风速资料的基本风压计算方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1739-1746.
[11] 高昊,王君杰,刘慧杰,王剑明. 连续梁桥地震行为可控设计准则及实用装置[J]. 吉林大学学报(工学版), 2020, 50(5): 1718-1727.
[12] 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667.
[13] 王鹏辉,乔宏霞,冯琼,曹辉,温少勇. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报(工学版), 2020, 50(1): 191-201.
[14] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[15] 张军,钱诚,郭春燕,钱玉君. 基于多源时空数据的建筑宜居性动态设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1169-1173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!