吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (4): 987-995.doi: 10.13229/j.cnki.jdxbgxb.20221036

• 交通运输工程·土木工程 • 上一篇    下一篇

高速公路交通事故影响因素及异质性分析

赵晓华1(),刘畅1,亓航1,欧居尚2(),姚莹1,郭淼1,杨海益1   

  1. 1.北京工业大学 城市建设学部,北京 100124
    2.四川警察学院 智能警务四川省重点实验室,成都 646000
  • 收稿日期:2022-09-12 出版日期:2024-04-01 发布日期:2024-05-17
  • 通讯作者: 欧居尚 E-mail:zhaoxiaohua@bjut.edu.cn;oujushang1973@163.com
  • 作者简介:赵晓华(1971-),女,教授,博士.研究方向:交通信息与控制,驾驶行为与安全技术,交通仿真.E-mail: zhaoxiaohua@bjut.edu.cn
  • 基金资助:
    智能警务四川省重点实验室资助项目(ZNJW2022KFZD001)

Influencing factors and heterogeneity analysis of highway traffic accidents

Xiao-hua ZHAO1(),Chang LIU1,Hang QI1,Ju-shang OU2(),Ying YAO1,Miao GUO1,Hai-yi YANG1   

  1. 1.Beijing Key Lab oratory of Transportation,Beijing University of Technology,Beijing 100124,China
    2.Key Laboratory of Intelligent Police of Sichuan Province,Sichuan Police College,Chengdu 646000,China
  • Received:2022-09-12 Online:2024-04-01 Published:2024-05-17
  • Contact: Ju-shang OU E-mail:zhaoxiaohua@bjut.edu.cn;oujushang1973@163.com

摘要:

本文采用随机参数logit模型,重点考虑未观察到的数据异质性,从道路线形条件、交通运行状态、气象环境条件和激进驾驶行为4个方面分析了高速公路交通事故的影响因素。结果表明,平面线形、纵面线形、拥堵指数、速度变异系数、天气条件、风力等级、急加速行为频率和急减速行为频率均对高速公路交通事故有显著影响;同时,在纵面线性、拥堵指数、急加速行为频率和急减速行为频率4个变量中发现了未观察到的异质性,且急减速行为频率与拥堵指数、急加速行为频率与急减速行为频率之间存在交互作用。本文对高速公路交通事故发生的原因做出科学合理的解释,为高速公路事故的科学治理提供理论支撑。

关键词: 交通运输规划与管理, 高速公路, 安全分析, 影响因素, 驾驶行为, 未观察到的异质性

Abstract:

In this paper, we analyze the influencing factors of highway traffic accidents from four aspects: road alignment conditions, traffic operation status, weather environment conditions and aggressive driving behavior, using a random parameter logit model and focusing on the unobserved data heterogeneity. The results showed that plane alignment, longitudinal alignment, congestion index, speed coefficient of variation, weather conditions, wind level, frequency of aggressive acceleration behavior and frequency of aggressive deceleration behavior all had significant effects on freeway traffic accidents; meanwhile, unobserved heterogeneity was found in the four variables of longitudinal alignment, congestion index, frequency of aggressive acceleration behavior and frequency of aggressive deceleration behavior, and the frequency of aggressive deceleration behavior and congestion index, frequency of aggressive There were interactions between the frequency of rapid acceleration behavior and the frequency of rapid deceleration behavior. The paper provides a scientific and reasonable explanation for the causes of highway traffic accidents and provides theoretical support for the scientific management of highway accidents.

Key words: transportation planning and management, freeway, safety analysis, influencing factor, driving behavior, unobserved heterogeneity

中图分类号: 

  • U491.31

图1

研究路段示意图"

表1

路段划分规则"

路段单元平面线形纵面线形线形组合
1直线路段上坡路段直线-上坡路段
2直线路段下坡路段直线-下坡路段
3直线路段竖曲线路段直线-竖曲线路段
4曲线路段上坡路段曲线-上坡路段
5曲线路段下坡路段曲线-下坡路段
6曲线路段竖曲线路段曲线-竖曲线路段

表2

变量统计性描述"

变量类型变量名称变量类别连续型变量离散型变量
平均值标准差最小值最大值样本量比例/%
因变量未发生事故80480.0
发生事故20120.0
路段长度0.4430.4780.0071.625
道路线形条件平面线形直线路段64464.1
曲线路段36135.9
纵面线形上坡路段39739.5
下坡路段29529.4
竖曲线路段31331.1
交通运行状态拥堵指数1.1390.6050.87212.018
速度变异系数0.0400.0440.0070.830
环境条件天气一般天气81080.6
小雨3219.4
风力等级0.9530.72304
激进驾驶行为急加速行为频率0.0030.0160.0000.0257
急减速行为频率0.0040.0400.0000.117

表3

变量共线性诊断"

变量VIF1/VIF
纵面线形—上坡1.6860.593
纵面线形—竖曲线1.5890.629
纵面线形—下坡1.2580.795
路段长度1.1720.853
速度变异系数1.1020.908
拥堵指数1.0800.926
平面线形1.0490.953
风力等级1.0400.961
天气1.0380.963
急加速行为频率1.0340.967
急减速行为频率1.0170.983

表4

模型标定结果"

变量名称多项logit随机参数logit平均边际系数
参数估计z-stat参数估计z-stat
截距项-7.153-11.29-7.465-11.19-
道路线形条件路段长度3.02113.023.13712.720.186 4
平面线形0.5632.490.4681.960.021 4
纵面线形-下坡---0.284-2.25-0.022 6
纵面线形-竖曲线1.4275.541.0992.820.059 4
纵面线形-竖曲线的标准差--1.5092.28-
交通运行状态拥堵指数2.0624.446.5042.510.175 6
拥堵指数的标准差--2.3082.34-
速度变异系数14.0472.7714.0462.680.041 5
环境条件天气1.6723.281.7483.130.006 8
风力等级0.9361.990.9751.870.002 5
激进驾驶行为急减速行为频率30.6961.85302.2623.120.001 8
急减速行为频率的标准差--368.0822.70-
急加速行为频率315.2764.65690.4213.220.011 1
急加速行为频率的标准差--643.3402.17-
模型估计样本量1 0051 005
仅含常数的对数似然-502.904-502.904
模型收敛的对数似然-287.138-278.793
R-sqrd0.4290.600
AIC592.3577.6

图2

随机参数概率密度分布图"

表5

随机参数相关系数矩阵"

变量纵面线形-竖曲线拥堵指数急加速行为频率急减速行为频率
纵面线形-竖曲线1.0000.8080.2390.083
拥堵指数0.8081.0000.5120.561*
急加速行为频率0.2390.5121.0000.334*
急减速行为频率0.0830.561*0.334*1.000
1 杨洋. 考虑区域类型差异的高速公路事故风险识别与交通安全评价研究[D]. 北京:北京交通大学交通运输学院, 2020.
Yang Yang, Research on the method of freeway crash risk identification and comprehensive traffic safety evaluation considering the regional type difference[D]. Beijing: School of Traffic and Transportation, Beijing JiaotongUniversity, 2020.
2 Ye X, Pendyala R M, Shankar V, Konduri K C. A simultaneous equations model of crash frequency by severity level for freeway sections[J]. Accident Analysis & Prevention, 2013, 57: 140-149.
3 温惠英,张璇,曾强.高速公路单车事故等级的影响因素分析[J].华南理工大学学报:自然科学版,2021,49(8):12-18.
Wen Hui-ying, Zhang Xuan, Zeng Qiang. Influence factor analysis of freeway single-vehicle crash severity[J]. Journal of South China University of Technology(Natural Science), 2021, 49(8): 12-18.
4 曾强,王雪松,张璇,等.基于时空交互模型的高速公路季节事故频次影响因素分析[J].中国公路学报,2020,33(11):255-263.
Zeng Qiang, Wang Xue-song, Zhang Xuan, et al. Seasonal analysis of contributing factors to freeway crash frequency using a spatio-temporal interaction model[J]. China Journal of Highway and Transport, 2020, 33(11): 255-263.
5 陈昭明,徐文远,曲悠扬,陈伟.基于混合Logit模型的高速公路交通事故严重程度分析[J].交通信息与安全,2019,37(3):42-50.
Chen Zhao-ming, Xu Wen-yuan, Qu You-yang, et al.Severity of traffic crashes on freeways based on mixed Logit model[J]. Journal of Transport Information and Safety, 2019, 37(3), 42-50.
6 冯忠祥,雷叶维,张卫华,等. 道路环境对绕城高速公路交通事故严重程度影响分析[J].中国公路学报,2016,29(5):116-123.
Feng Zhong-xiang, Lei Ye-wei, Zhang Wei-hua, et al. Analysis on traffic accident severity influenced by road environment on circular highway[J]. China Journal of Highway and Transport, 2016, 29(5): 116-123.
7 National Highway Traffic Safety Administration. Aggressive drivers view traffic differently: capital beltway focus groups find[J]. Traffic Tech, 1998,175:1-8.
8 Islam M, Mannering F. A temporal analysis of driver-injury severities in crashes involving aggressive and non-aggressive driving[J]. Analytic Methods in Accident Research, 2020, 27: No.100128.
9 Guo M, Zhao X, Yao Y, et al. A study of freeway crash risk prediction and interpretation based on risky driving behavior and traffic flow data[J]. Accident Analysis & Prevention, 2021, 160: No.106328.
10 Shankar V, Mannering F, Barfield W. Effect of roadway geometrics and environmental factors on rural freeway accident frequencies[J]. Accident Analysis & Prevention, 1995, 27(3): 371-389.
11 Miaou, Pin Shaw, Lord, et al. Modeling traffic crash-flow relationships for intersections: Dispersion parameter, functional form, and Bayes versus empirical Bayes methods[J]. Transportation Research Record Journal of the Transportation Research Board, 2003, 1840:31-40.
12 Feng C, Chen S, Ma X. Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data[J]. Journal of Safety Research, 2018, 65(6):153-159.
13 宋栋栋,杨小宝,祖兴水,等.基于均值异质性随机参数Logit模型的城市道路事故驾驶人受伤严重程度研究[J].交通运输系统工程与信息,2021,21(3):214-220.
Song Dong-dong, Yang Xiao-bao, Zu Xing-shui, et al. Examination of driver injury severity in urban crashes: a random parameters logit model with heterogeneity in means approach[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 214-220.
14 Federal Highway Administration. travel time reliability: making it there on time, all the time [R/OL]. [2006-12-10] .
15 赵晓华,亓航,姚莹,等. 基于可解释机器学习框架的快速路立交出口风险预测及致因解析[J].东南大学学报:自然科学版,2022,52(1):152-161.
Zhao Xiao-hua, Qi Hang, Yao Ying, et al. Risk prediction and causation analysis of expressway interchange exits based on interpretable machine learning framework[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(1): 152-161.
16 Xiong Y, Tobias J L, Mannering F L. The analysis of vehicle crash injury-severity data: a Markov switching approach with road-segment heterogeneity[J]. Transportation Research Part B: Methodological, 2014, 67: 109-128.
17 Buka S L, Viscidi E W, Susser E S. Handbook of Epidemiology[M]. New Yor: Elsiver, 2014.
18 Behnood A, Al-Bdairi N. Determinant of injury severities in large truck crashes: a weekly instability analysis[J]. Safety Science, 2020, 131: No.104911.
19 Islam M, Alnawmasi N, Mannering F. Unobserved heterogeneity and temporal instability in the analysis of work-zone crash-injury severities[J]. Analytic Methods in Accident Research, 2020, 28: No.100130.
20 Hou Q, Tarko A P, Meng X. Investigating factors of crash frequency with random effects and random parameters models: new insights from Chinese freeway study[J]. Accident Analysis & Prevention, 2018, 120(11):1-12.
[1] 陈仁祥,胡超超,胡小林,杨黎霞,张军,何家乐. 基于改进YOLOv5的驾驶员分心驾驶检测[J]. 吉林大学学报(工学版), 2024, 54(4): 959-968.
[2] 杨秀建,贾晓寒,张生斌. 考虑汽车队列动态特性的混合交通流特性[J]. 吉林大学学报(工学版), 2024, 54(4): 947-958.
[3] 邬岚,赵乐,李根. 基于方差异质性随机参数模型的汇合行为分析[J]. 吉林大学学报(工学版), 2024, 54(4): 883-889.
[4] 范博松,邵春福. 城市轨道交通突发事件风险等级判别方法[J]. 吉林大学学报(工学版), 2024, 54(2): 427-435.
[5] 高海龙,徐一博,刘坤,李春阳,卢晓煜. 基于多源数据融合的高速公路路网短时交通流参数实时预测[J]. 吉林大学学报(工学版), 2024, 54(1): 155-161.
[6] 张健,李青扬,李丹,姜夏,雷艳红,季亚平. 基于深度强化学习的自动驾驶车辆专用道汇入引导[J]. 吉林大学学报(工学版), 2023, 53(9): 2508-2518.
[7] 赵胜前,丛卓红,游庆龙,李源. 沥青-集料黏附和剥落研究进展[J]. 吉林大学学报(工学版), 2023, 53(9): 2437-2464.
[8] 郑长江,胡欢,杜牧青. 考虑枢纽失效的多式联运快递网络结构设计[J]. 吉林大学学报(工学版), 2023, 53(8): 2304-2311.
[9] 张雅丽,付锐,袁伟,郭应时. 考虑能耗的进出站驾驶风格分类及识别模型[J]. 吉林大学学报(工学版), 2023, 53(7): 2029-2042.
[10] 何永明,陈世升,冯佳,万亚楠. 基于高精地图的超高速公路虚拟轨道系统[J]. 吉林大学学报(工学版), 2023, 53(7): 2016-2028.
[11] 杨柳,王创业,王梦言,程阳. 设置自动驾驶小客车专用车道的六车道高速公路交通流特性[J]. 吉林大学学报(工学版), 2023, 53(7): 2043-2052.
[12] 王殿海,胡佑薇,蔡正义,曾佳棋,姚文彬. 基于BPR函数的城市道路间断流动态路阻模型[J]. 吉林大学学报(工学版), 2023, 53(7): 1951-1961.
[13] 李艳波,柳柏松,姚博彬,陈俊硕,渠开发,武奇生,曹洁宁. 考虑路网随机特性的高速公路换电站选址[J]. 吉林大学学报(工学版), 2023, 53(5): 1364-1371.
[14] 宋灿灿,荆迪菲,谢俊峰,康可心. 设置广告牌的高速公路平曲线路段驾驶行为分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1345-1354.
[15] 胡莹,邵春福,王书灵,蒋熙,孙海瑞. 基于共享单车骑行轨迹的骑行质量识别方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1040-1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!