吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (7): 2043-2052.doi: 10.13229/j.cnki.jdxbgxb.20211007

• 交通运输工程·土木工程 • 上一篇    

设置自动驾驶小客车专用车道的六车道高速公路交通流特性

杨柳1,2(),王创业1,2,王梦言1,2,程阳3   

  1. 1.长沙理工大学 公路养护技术国家工程实验室,长沙 410114
    2.长沙理工大学 交通运输工程学院,长沙 410114
    3.美国威斯康辛大学麦迪逊分校 土木与环境工程系,麦迪逊 53706,美国
  • 收稿日期:2021-10-05 出版日期:2023-07-01 发布日期:2023-07-20
  • 作者简介:杨柳(1980-),男,讲师,博士.研究方向:自动驾驶道路设计理论与方法.E-mail: yangliuemail@163.com
  • 基金资助:
    湖南省教育厅科学研究项目(20A009);长沙理工大学公路养护技术国家工程实验室开放基金项目(KFJ190102);长沙理工大学“双一流”国际合作项目(2019IC09)

Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars

Liu YANG1,2(),Chuang-ye WANG1,2,Meng-yan WANG1,2,Yang CHENG3   

  1. 1.National Engineering Laboratory of Highway Maintenance Technology,Changsha University of Science & Technology,Changsha 410114,China
    2.School of Traffic and Transportation Engineering,Changsha University of Science & Technology,Changsha 410114,China
    3.Department of Civil and Environmental Engineering,University of Wisconsin?Madison,Madison 53706,United States
  • Received:2021-10-05 Online:2023-07-01 Published:2023-07-20

摘要:

为解决未来高速公路上自动驾驶小客车(AC)、人类驾驶小客车和人类驾驶大货车混行所带来的安全和效率问题,研究了在六车道高速公路上设置AC专用车道的方法及其对交通流的影响。提出了内侧式AC专用车道的隔离方式和出入口布设方法。基于VISSIM建立了包含入口和出口匝道的高速公路模型、车辆模型和驾驶行为模型,高速公路设计速度取120 km/h,货车混入率取0.2。通过模拟实验,研究了设置内侧式AC专用车道后AC渗透率和AC安全车头时距对交通流特性的影响,探讨了AC专用车道对各车型和各车道运行的影响。结果表明:AC渗透率对交通流特性的影响是显著的和非线性的,存在一个最优AC渗透率,使设置了AC专用车道的高速公路具有最大的通行能力、临界密度和平均速度;AC安全车头时距对交通流特性的影响是非线性的,AC安全车头时距越小,对高速公路通行能力的改善效果越显著;AC渗透率对各车型和各车道的流量和平均速度都有显著影响,对AC流量和内侧车道流量的影响最大。

关键词: 道路工程, 高速公路, 自动驾驶小客车, 专用车道, 交通流, 渗透率, 安全车头时距

Abstract:

In order to solve the safety and efficiency problems caused by the mixed operation of automatic cars (AC), human-driving cars and human-driving trucks on freeways in the future, the method of setting an AC dedicated lane on six-lane freeways and its impact on traffic flow are studied. The separation mode and the entrances and exits layout method for inside AC dedicated lane are proposed. The models of vehicles, driving behaviors and freeway sections with entrance and exit ramps are established based on VISSIM. Through simulation experiments in which the freeway design speed is 120 km/h and the truck ratio is 0.2, the effects of AC penetration rate and AC safe headway on traffic flow characteristics after setting an AC dedicated lane are studied, and the effects of the AC dedicated lane on the operation of each vehicle type and each lane are discussed. The results show that the influence of AC penetration rate on traffic flow characteristics is significant and nonlinear; There is an optimal AC penetration rate, which can maximize the capacity, critical density and average speed of the freeway with an AC dedicated lane; The influence of AC safe headway on traffic flow characteristics is nonlinear; The smaller the AC safe headway, the more significant the improvement effect on freeway capacity; The AC penetration rate has significant impacts on the flow rate and average speed of each vehicle type and each lane, especially on the flow rate of AC and inside lane.

Key words: road engineering, freeway, automatic car, dedicated lane, traffic flow, penetration rate, safe headway

中图分类号: 

  • U412

图1

高速公路内侧式AC专用车道布置图"

图2

无AC专用车道高速公路示意图"

图3

设置AC专用车道高速公路示意图"

表1

车辆参数取值"

车辆类型

车辆尺寸(长×宽)/

(m×m)

最大速度/

(km·h-1

加速度/(m·s-2减速度/(m·s-2
最大期望最大期望
AC6×1.81203.01.04.52.5
HC6×1.81203.01.04.52.5
HT18.1×2.55800.60.33.01.0

表2

AC专用车道跟驰模型参数取值"

参数数值参数数值
s0(α)/m2.0α(α)/(m?s-2)4.00
s1(α)/m0.0v0?/(m?s-1)33.33
T/s1.5b(α)/(m?s-2)2.00

表3

HV车道跟驰模型参数说明和标定"

参数名称合理区间标定值
CC0/m

停车时的平均期望

车辆间距

0.5~2.52
CC1/s期望保持的车头时距0.7~21.5
CC2/m跟车变量2~84
CC3进入跟驰状态的阈值-10~-2-4
CC4跟车状态的阈值10.05~20.35
CC5跟车状态的阈值20.05~22
CC6车速震动0~2011.44
CC7/(m·s-2震动加速度0~20.25
CC8/(m·s-2停车加速度2~3.53.5
CC9/(m·s-280 km/h时的加速度0.5~21.5

表4

换道模型参数标定"

车道变换参数前车后车
最大减速度/(m·s-2-4-3
增加-1 m/s2加速度需要的距离/m300200
可接受的减速度/(m·s-2-1-0.5
消散前的等待时间/s9999
最小车头距离(前/后)/m0.5
在慢速车道上超车所需的最小时间间隔/s0
安全距离折减系数0.6
协调刹车的最大减速度/(m·s-2-3

表5

输入流量分配表"

道路类型

入口匝道

输入流量

HV车道

输入流量

AC专用车道输入流量
无AC专用 车道1/4AC+1/4HC+1/4HT3/4AC+3/4HC+3/4HT-
有AC专用 车道1/2AC+1/3HC+1/3HT2/3HC+2/3HT1/2AC

图4

AC渗透率P对交通流特性的影响"

图5

AC安全车头时距T对交通流特性的影响"

图6

设置AC专用车道对各车型的影响"

图7

设置AC专用车道对各车道的影响"

1 Bansal P, Kockelman K M. Forecasting Americans' long-term adoption of connected and autonomous vehicle technologies[J]. Transportation Research Part A, 2017, 95: 49-63.
2 Ye L, Yamamoto T. Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput[J]. Physica A: Statistical Mechanics and its Applications, 2018, 512(11): 588-597.
3 魏修建, 胡荣鑫, 苏航, 等. 双车道自动-手动驾驶汽车混合交通流博弈模型及其仿真[J]. 系统工程, 2018, 36(11): 97-104.
Wei Xiu-jian, Hu Rong-xin, Su Hang, et al. Mixed traffic flow game model and simulation of automatic and manual driving vehicle in two-lane condition[J]. Systems Engineering, 2018, 36(11): 97-104.
4 Chen Shu-kai, Wang Hua, Meng Qiang. Designing autonomous vehicle incentive program with uncertain vehicle purchase price[J]. Transportation Research Part C, 2019, 103(6): 226-245.
5 Lin Xiao, Wang Meng, Arem B V. Traffic flow impacts of converting an HOV lane into a dedicated CACC lane on a freeway corridor[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 12(1): 60-73.
6 Chen Zhi-bin, He Fang, Zhang Li-hui, et al. Optimal deployment of autonomous vehicle lanes with endogenous market penetration[J]. Transportation Research Part C, 2016, 72(11): 143-156.
7 Ivanchev J, Knoll A, Zehe D, et al. Potentials and implications of dedicated highway lanes for autonomous vehicles[J]. arXiv: Multiagent Systems, 2017: 1-12.
8 Ma Ke, Wang Hao. Influence of exclusive lanes for connected and autonomous vehicles on freeway traffic flow[J]. IEEE Access, 2019, 7: 50168-50178.
9 Yu H, Tak S, Park M, et al. Impact of autonomous-vehicle-only lanes in mixed traffic conditions[J]. Transportation Research Record, 2019, 2673(9): 430-439.
10 孙玲, 张静, 周瀛, 等. 车路协同环境下自动驾驶专用车道入口区域设计[J]. 公路交通科技, 2020, 37(): 122-129.
Sun Ling, Zhang Jing, Zhou Ying, et al. Entrance area design of autonomous driving lane under vehicle-road collaboration environment[J]. Highway Traffic Technology, 2020, 37(Sup.1): 122-129.
11 秦严严, 王昊, 王炜, 等. 自适应巡航控制车辆跟驰模型综述[J]. 交通运输工程学报, 2017, 17(3): 121-130.
Qin Yan-yan, Wang Hao, Wang Wei, et al. Review of car-following models of adaptive cruise control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 121-130.
12 Li Tie-nan, Chen Dan-jue, Zhou Hao,et al. Car-following behavior characteristics of adaptive cruise control vehicles based on empirical experiments[J]. Transportation Research Part B, 2021, 147: 67-91.
13 Treiber M, Hennecke A, Helbing D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62(2): 1805-1824.
14 蒋阳升, 王思琛, 高宽, 等. 混入智能网联车队的混合交通流元胞自动机模型[J]. 系统仿真学报, 2021,34(5): 1-8.
Jiang Yang-sheng, Wang Si-chen, Gao Kuan, et al. Cellular automata model of mixed traffic flow composed of intelligent connected vehicles' platoon[J]. Journal of System Simulation, 2021,34(5):1-8.
15 陈永, 张薇. 高速跟驰交通流动力学模型研究[J]. 物理学报, 2020, 69(6): 136-148.
Chen Yong, Zhang Wei. Dynamic model of high speed following traffic flow[J]. Acta Physica Sinica, 2020, 69(6): 136-148.
16 Ma Xiao-liang. A neural-fuzzy framework for modeling car-following behavior[C]∥IEEE International Conference on Systems, Man and Cybernetics, Taipei, China, 2006: 1178-1183.
17 Wiedemann R. Simulation of Road Traffic in Traffic Flow[R]. Karlsruhe: University of Karlsruhe(TH), 1974.
18 王殿海, 金盛. 车辆跟驰行为建模的回顾与展望[J]. 中国公路学报, 2012, 25(1): 115-127.
Wang Dian-hai, Jin Sheng. Review and outlook of modeling of car following behavior[J]. China Journal of Highway and Transport, 2012, 25(1): 115-127.
19 徐桃让, 姚志洪, 蒋阳升, 等. 智能网联车环境下考虑反应时间影响的基本图模型[J]. 公路交通科技, 2020, 37(8): 108-117.
Xu Yao-rang, Yao Zhi-hong, Jiang Yang-sheng, et al. Fundamental diagram model of considering reaction time in environment of intelligent connected vehicles[J]. Journal of Highway and Transportation Research and Development, 2020, 37(8): 108-117.
20 王雪松, 孙平, 张晓春, 等. 基于自然驾驶数据的高速公路跟驰模型参数标定[J]. 中国公路学报, 2020, 33(5): 132-142.
Wang Xue-song, Sun Ping, Zhang Xiao-chun, et al. Calibrating car-following models on freeway based on naturalistic driving data[J]. China Journal of Highway and Transport, 2020, 33(5): 132-142.
21 李志伟. 智能网联车辆与普通车辆混合车流交通状态估计方法研究[D]. 南京: 东南大学交通运输工程学院, 2017.
Li Zhi-wei. Study on methods of traffic estimation under connected and autonomous vehicles and manual vehicles mixed traffic flow[D]. Nanjing: School of Transportation Southeast University, 2017.
[1] 何永明,陈世升,冯佳,万亚楠. 基于高精地图的超高速公路虚拟轨道系统[J]. 吉林大学学报(工学版), 2023, 53(7): 2016-2028.
[2] 郑睢宁,何锐,路天宇,徐紫祎,陈华鑫. RET/胶粉复合改性沥青制备及其混合料性能评价[J]. 吉林大学学报(工学版), 2023, 53(5): 1381-1389.
[3] 李艳波,柳柏松,姚博彬,陈俊硕,渠开发,武奇生,曹洁宁. 考虑路网随机特性的高速公路换电站选址[J]. 吉林大学学报(工学版), 2023, 53(5): 1364-1371.
[4] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[5] 杨帆,李琛琛,李盛,刘海伦. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132.
[6] 关博文,邸文锦,王发平,吴佳育,张硕文,贾治勋. 干湿循环与交变荷载作用下混凝土硫酸盐侵蚀损伤[J]. 吉林大学学报(工学版), 2023, 53(4): 1112-1121.
[7] 刘状壮,张有为,季鹏宇,Abshir Ismail Yusuf,李林,郝亚真. 电热型融雪沥青路面传热特性研究[J]. 吉林大学学报(工学版), 2023, 53(2): 523-530.
[8] 罗瑞发,郝慧君,徐桃让,顾秋凡. 考虑智能网联车队强度的混合交通流基本图模型[J]. 吉林大学学报(工学版), 2023, 53(2): 405-412.
[9] 魏海斌,马子鹏,毕海鹏,刘汉涛,韩栓业. 基于力学响应分析方法的导电橡胶复合路面铺装技术[J]. 吉林大学学报(工学版), 2023, 53(2): 531-537.
[10] 时成林,王勇,吴春利,宋文祝. 路堤挡土墙主动土压力计算方法修正[J]. 吉林大学学报(工学版), 2022, 52(6): 1394-1403.
[11] 郭庆林,刘强,吴春利,李黎丽,李懿明,刘富春. 导电沥青及混合料裂缝局部温度场及愈合效果[J]. 吉林大学学报(工学版), 2022, 52(6): 1386-1393.
[12] 姚玉权,仰建岗,高杰,宋亮. 基于性能-费用模型的厂拌再生沥青混合料优化设计[J]. 吉林大学学报(工学版), 2022, 52(3): 585-595.
[13] 夏全平,高江平,罗浩原,张其功,李志杰,杨飞. 用于高模量沥青砼的复合改性硬质沥青低温性能[J]. 吉林大学学报(工学版), 2022, 52(3): 541-549.
[14] 叶奋,胡诗园. 考虑旧水泥路面接缝传荷能力的超薄罩面力学特性[J]. 吉林大学学报(工学版), 2022, 52(11): 2636-2643.
[15] 于晓贺,罗蓉,柳子尧,黄婷婷,束裕. 沥青路面典型裂缝湿度场数值模拟[J]. 吉林大学学报(工学版), 2022, 52(10): 2343-2351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!