吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (5): 1311-1322.doi: 10.13229/j.cnki.jdxbgxb.20220754

• 交通运输工程·土木工程 • 上一篇    

协同换道避障模型和轨迹数据驱动的车辆协同避障策略

秦雅琴(),钱正富,谢济铭()   

  1. 昆明理工大学 交通工程学院,昆明 650500
  • 收稿日期:2022-06-18 出版日期:2024-05-01 发布日期:2024-06-11
  • 通讯作者: 谢济铭 E-mail:qinyaqin@kust.edu.cn;xiejiming@stu.kust.edu.cn
  • 作者简介:秦雅琴(1972-),女,教授,博士. 研究方向:交通系统安全与仿真.E-mail: qinyaqin@kust.edu.cn
  • 基金资助:
    国家自然科学基金项目(71861016);国家重点研发计划项目(2018YFB1600500)

Vehicle cooperative obstacle avoidance strategy driven by CLAM model and trajectory data

Ya-qin QIN(),Zheng-fu QIAN,Ji-ming XIE()   

  1. Faculty of Transportation Engineering,Kunming University of Science and Technology,Kunming 650500,China
  • Received:2022-06-18 Online:2024-05-01 Published:2024-06-11
  • Contact: Ji-ming XIE E-mail:qinyaqin@kust.edu.cn;xiejiming@stu.kust.edu.cn

摘要:

考虑车辆类型、驾驶风格及不同阶段影响车辆换道的关键目标,将车辆避障过程中的“车-车交互”机理描述为力的关系,构建协同换道避障模型(CLAM),提取并建立适用于突发事件的车辆避障微观轨迹数据集,将车辆避障转化为多约束优化控制问题,以优化算法(OA)为纽带,设计车辆协同避障控制(CLAM-OA)策略。结果表明:相较于数据驱动的长短时记忆模型,CLAM-OA策略输出的误差均显著减小、车速与位移在不同时域的输出结果也更加稳定。

关键词: 交通运输系统工程, 避障策略, 混合驱动, 车辆控制, 换道行为, 微观轨迹数据

Abstract:

Considering the vehicle type, driving style, and the most important objects (MIO) affecting the vehicle lane change at different stages, cooperative lane-change obstacle avoidance model (CLAM) was constructed by describing the "vehicle-vehicle interaction" mechanism in the vehicle obstacle avoidance process as a force relationship; the vehicle lane change avoidance execution events under emergencies were extracted according to the lane change execution segment extraction criterion to establish a vehicle obstacle avoidance micro-trajectory dataset to unexpected events. The cooperative vehicle lane change obstacle avoidance was transformed into a multi-constraint optimal control problem. The cooperative lane-change obstacle avoidance model-optimistic algorithm strategy (CLAM-OA strategy) was designed with the optimization algorithm as a bridge. The results show that compared with the data-driven LSTM model, the outputs of the CLAM-OA strategy have significantly lower errors and more stable results in different time domains of vehicle speed and displacement.

Key words: engineering of communication and transportation system, collision avoidance control strategy, hybrid drive, vehicle control, lane changing behavior, micro-trajectory data

中图分类号: 

  • U491

图1

研究架构"

图2

换道执行片段提取准则图"

图3

车辆车道偏离与时间的关系"

图4

车辆换道避撞过程示意图"

图5

车辆换道切出过程受力示意图"

图6

车辆换道切入过程受力示意图"

图7

车辆受规则力示意图"

图8

模型与数据驱动的车辆协同避障策略伪代码"

表1

换道切出模型的参数分布情况"

参数参数描述参数范围平均值标准差5%分位数50%分位数95%分位数
α期望速度修正系数[-9.454, 3.222]0.0751.492-1.4230.0581.740
β从众系数[-5.360, 11.659]0.3042.027-2.1600.0942.557
χ对后车的排斥强度[0.003, 20.488]2.2173.7210.0170.7799.008
δ对后车排斥力的作用范围[0.172, 45.075]10.17211.0400.4436.38834.053
ε对目标车道前后车辆的排斥强度[0, 11.963]0.6302.0650.0010.0133.416
?受目标车道车辆排斥力的作用范围[0.046, 49.396]6.2139.5880.1562.01922.486
φ对突发障碍的排斥强度[0.183, 42.610]11.97011.9940.7166.34340.965
γ受突发障碍排斥力的作用范围[0.218, 53.127]9.1209.9340.4466.57824.613

表2

换道切入模型的参数分布情况"

参数参数描述参数范围平均值标准差5%分位数50%分位数95%分位数
α期望速度修正系数[-1.962, 6.380]0.0881.181-1.5630.0101.517
β从众系数[-8.203, 10.036]-0.2502.004-5.6810.0491.487
ε对目标车道前后车辆的排斥强度[-15.487, 162.008]2.81410.754-10.8011.74722.364
?受目标车道车辆排斥力的作用范围[0, 65.982]19.4299.9041.38219.02332.346
CL规则力修正系数[0, 14.940]1.9282.8470.0921.0769.232
f车道线的规则力[0, 8.832]0.9211.5100.0160.3503.562

图9

CLAM-OA策略与LSTM换道预测模型换道中的表现"

表3

CLAM-OA策略与LSTM换道预测模型量化评价"

指标CLAM-OALSTM
纵向位移x横向位移y纵向速度vx横向速度vy纵向位移x横向位移y纵向速度vx横向速度vy
MSE0.1870.0510.0200.00524.1020.0299.1490.480
RMSE0.4320.2260.1400.0744.9090.1703.0250.693
MAE0.3090.0580.0710.0323.3270.1101.9710.346
RMSPE0.0070.0040.0410.1350.0830.0030.8791.275

表4

不同时域模型评价"

时域/sCLAM-OALSTM
ADE/mFDE/mADE/mFDE/m
10.2320.7140.2162.145
20.3531.0531.4448.173
30.5101.2123.79918.286

图10

模型不同预测时域位移误差对比"

图11

换道过程中不同场景车辆受力示意"

1 Wang Z, Shi X W, Zhao X M, et al. Modeling decentralized mandatory lane change for connected and autonomous vehicles: an analytical method[J]. Transportation Research Part C: Emerging Technologies, 2021, 133: No. 103441.
2 Aradi S. Survey of deep reinforcement learning for motion planning of autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 740-759.
3 Liu Q X, Xu S H, Lu C, et al. Early recognition of driving intention for lane change based on Recurrent Hidden Semi-Markov model[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10545-10557.
4 Wang H, Lu B, Li J, et al. Risk assessment and mitigation in local path planning for autonomous vehicles with LSTM based predictive model[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(4): 2738-2749.
5 Wang J J, Li Y L, Gao R X, et al. Hybrid physics-based and data-driven models for smart manufacturing: modelling, simulation, and explainability[J]. Journal of Manufacturing Systems, 2022, 63: 381-391.
6 来飞, 叶心. 汽车高速行驶时自动紧急转向避撞的前馈与反馈跟踪控制的研究[J]. 汽车工程, 2020, 42(10): 1404-1411.
Lai Fei, Ye Xin. Research on feedforward and feedback tracking control for automatic emergency steering collision avoidance in vehicle high-speed driving[J]. Automotive Engineering, 2020, 42(10): 1404-1411.
7 王国栋, 刘立, 孟宇, 等. 一体式车辆避撞轨迹规划与跟踪控制[J]. 交通运输系统工程与信息, 2022, 22(2): 127-136, 162.
Wang Guo-dong, Liu Li, Meng Yu, et al. Integrated control of trajectory planning and tracking for vehicle collision avoidance[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 127-136, 162.
8 彭涛, 苏丽俐, 关志伟, 等. 高速公路弯道路段车辆紧急避撞安全换道模型[J]. 汽车工程, 2019, 41(9): 1013-1020.
Peng Tao, Su Li-li, Guan Zhi-wei, et al. A safe lane change model for vehicle emergent collision avoidance on curved section of highway[J]. Automotive Engineering, 2019, 41(9): 1013-1020.
9 韩月起, 张凯, 宾洋, 等. 基于凸近似的避障原理及无人驾驶车辆路径规划模型预测算法[J]. 自动化学报, 2020, 46(1): 153-167.
Han Yue-qi, Zhang Kai, Yang Bin, et al. Convex approximation based a voidance theory and path planning MPC for driver-less vehicles[J]. Acta Automatica Sinica, 2020, 46(1): 153-167.
10 He X K, Liu Y L, Lyu C, et al. Emergency steering control of autonomous vehicle for collision avoidance and stabilisation[J]. Vehicle System Dynamics, 2019, 57(8): 1163-1187.
11 Lee K, Kum D. Collision avoidance/mitigation system: motion planning of autonomous vehicle via predictive occupancy map[J]. IEEE Access, 2019, 7: 52846-52857.
12 郭景华, 何智飞, 罗禹贡, 等. 人机混驾环境下基于深度学习的车辆切入轨迹预测[J]. 汽车工程, 2022, 44(2): 153-160, 214.
Guo Jing-hua, He Zhi-fei, Luo Yu-gong, et al. Vehicle cut-in trajectory prediction based on deep learning in a human-machine mixed driving environment[J]. Automotive Engineering, 2022, 44(2): 153-160, 214.
13 秦雅琴, 钱正富, 谢济铭, 等. 基于社会力的交织区突发瓶颈段协同换道决策模型[J]. 华南理工大学学报:自然科学版, 2022, 50(7): 66-75.
Qin Ya-qin, Qian Zheng-fu, Xie Ji-ming, et al. Cooperative lane change decision-making model of bottleneck emergency section in weaving area based on social force[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(7): 66-75.
14 Yang D, Zhou X, Su G, et al. Model and simulation of the heterogeneous traffic flow of the urban signalized intersection with an island work zone[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5): 1719-1727.
15 Yang X L, Yang X X, Li Y X, et al. Obstacle avoidance in the improved social force model based on ant colony optimization during pedestrian evacuation[J]. Physica A: Statistical Mechanics and its Applications, 2021, 583: No. 126256.
16 Liu S, Wang X S, Hassanin O, et al. Calibration and evaluation of responsibility-sensitive safety (RSS) in automated vehicle performance during cut-in scenarios[J]. Transportation Research Part C: Emerging Technologies, 2021, 125: No. 103037.
17 Katoch S, Chauhan S S, Kumar V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126.
18 谢济铭, 彭博, 秦雅琴. 基于换道概率分布的多车道交织区元胞自动机模型[J]. 交通运输系统工程与信息, 2022, 22(3): 276-285.
Xie Ji-ming, Peng Bo, Qin Ya-qin. Cellular automata model of multi-lane weaving area based on lane-changing probability distribution[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 276-285.
[1] 张明业,杨敏,黎彧,黄世玉,李清韵. 考虑有序充电策略的多车型电动公交调度优化[J]. 吉林大学学报(工学版), 2024, 54(5): 1293-1301.
[2] 马潇驰,陆建. 基于基因表达式编程的高架道路事故实时预测[J]. 吉林大学学报(工学版), 2024, 54(3): 719-726.
[3] 严利鑫,冯进培,郭军华,龚毅轲. 不同险态情景下共驾型智能车辆接管行为特征分析[J]. 吉林大学学报(工学版), 2024, 54(3): 683-691.
[4] 曲大义,张可琨,顾原,王韬,宋慧,戴守晨. 自动驾驶车辆换道决策行为分析及分子动力学建模[J]. 吉林大学学报(工学版), 2024, 54(3): 700-710.
[5] 涂辉招,王万锦,乔鹏,郭静秋,鹿畅,吴海飞. 自动驾驶卡车路测安全员接管干预行为解析[J]. 吉林大学学报(工学版), 2024, 54(3): 727-740.
[6] 张健,李青扬,李丹,姜夏,雷艳红,季亚平. 基于深度强化学习的自动驾驶车辆专用道汇入引导[J]. 吉林大学学报(工学版), 2023, 53(9): 2508-2518.
[7] 郑植,袁佩,金轩慧,魏思斯,耿波. 桥墩复合材料柔性防撞护舷试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2581-2590.
[8] 郑皓,余立均,智鹏鹏,汪忠来. 仿生扑翼微型飞行器动态避障策略[J]. 吉林大学学报(工学版), 2023, 53(9): 2732-2740.
[9] 李建华,王泽鼎. 考虑路径耗时的城市汽车分布式充电桩选点规划[J]. 吉林大学学报(工学版), 2023, 53(8): 2298-2303.
[10] 李洪涛,王琳虹,李俊达. 公路交叉口照明和限速对视觉搜索能力的影响[J]. 吉林大学学报(工学版), 2023, 53(8): 2287-2297.
[11] 巫威眺,曾坤,周伟,李鹏,靳文舟. 基于多源数据和响应面优化的公交客流预测深度学习方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2001-2015.
[12] 程国柱,盛林,赵浩,冯天军. 基于危险度分析的信号交叉口专用相位设置条件[J]. 吉林大学学报(工学版), 2023, 53(7): 1962-1969.
[13] 何永明,陈世升,冯佳,万亚楠. 基于高精地图的超高速公路虚拟轨道系统[J]. 吉林大学学报(工学版), 2023, 53(7): 2016-2028.
[14] 薛志佳,王召阳,张久鹏,晏长根,许子凯,张英立,黄晓明,马涛. 泥石流作用下道路结构韧性分析及提升[J]. 吉林大学学报(工学版), 2023, 53(6): 1773-1781.
[15] 刘振亮,赵存宝,吴云鹏,马迷娜,马龙双. 数据驱动的公路桥梁网络全寿命抗震韧性评估[J]. 吉林大学学报(工学版), 2023, 53(6): 1695-1701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!