吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (6): 1501-1511.doi: 10.13229/j.cnki.jdxbgxb.20220951

• 车辆工程·机械工程 •    

湿滑路面轮胎接地力学特性模型

刘从臻1(),陈高1,刘洪柱1,马强1,徐成伟1,孟辉1,王国林2   

  1. 1.山东理工大学 交通与车辆工程学院,山东 淄博 255022
    2.江苏大学 汽车与交通工程学院,江苏 镇江 212013
  • 收稿日期:2022-07-13 出版日期:2024-06-01 发布日期:2024-07-23
  • 作者简介:刘从臻(1979-),男,副教授,博士.研究方向:轮胎力学性能分析与优化设计.E-mail:lcz200811@163.com
  • 基金资助:
    国家自然科学基金项目(52072156);山东省自然科学基金项目(ZR2020QE155);山东省精密制造与特种加工重点实验室项目(5322025)

Tire grounding mechanical model on wet roads

Cong-zhen LIU1(),Gao CHEN1,Hong-zhu LIU1,Qiang MA1,Cheng-wei XU1,Hui MENG1,Guo-lin WANG2   

  1. 1.School of Transportation and Vehicle Engineering,Shandong University of Technology,Zibo 255022,China
    2.School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013,China
  • Received:2022-07-13 Online:2024-06-01 Published:2024-07-23

摘要:

为研究部分滑水状态下轮胎的接地力学特性,以205/55 R16乘用车轮胎为研究对象,建立了耦合欧拉-拉格朗日滑水仿真模型。利用正交试验设计方法创建试验方案,通过极差分析、偏相关分析和多元线性回归分析,建立了适用于不同工况的湿滑路面轮胎侧偏纵滑“亚利桑那大学轮胎模型”。对比分析表明,该模型能够准确预测湿滑路面上的轮胎接地力学特性,可为研究轮胎多工况滑水性能提供理论参考。

关键词: 车辆工程, 轮胎滑水, 接地力学特性, 侧偏侧倾, UA模型

Abstract:

In order to study the grounding mechanical characteristics of tire under partial hydroplaning state, the coupling Euler-Lagrange hydroplaning simulation model was established with 205/55 R16 passenger car tires as the research object, and the orthogonal experimental design method was used to create the experimental scheme. With range analysis, partial correlation analysis and multiple linear regression analysis, the "University of Arizona Tire Model" was established for different working conditions of wet road tire sideways longitudinal slip. Comparative analysis shows that the model can accurately predict the grounding mechanical properties of tires on wet slippery road, which provides a theoretical reference for the study of the hydroplaning performance of tires under multiple working conditions.

Key words: automobile engineering, tire hydroplaning, grounding mechanical characteristics, sideslip and camber, UA model

中图分类号: 

  • U463.341

图1

轮胎和路面有限元模型"

图2

静态加载试验"

图3

载荷-轮胎压缩变形量曲线"

图4

欧拉水膜模型"

图5

水流流动模型"

图6

轮胎SAE坐标系"

图7

各轮胎载荷下接地印迹变化"

图8

轮胎垂向力和接地面积随载荷的变化情况"

图9

轮胎垂向力和接地面积随充气压力的变化情况"

图10

垂向力和接地面积随水膜厚度的变化情况"

图11

垂向力和接地面积随沟槽深度的变化情况"

图12

垂向力和接地面积随行驶速度的变化情况"

图13

不同侧偏角下动水压力变化"

图14

不同侧偏角下轮胎临界滑水速度"

图15

不同侧倾角下动水压力变化"

图16

不同侧倾角下轮胎临界滑水速度"

表1

正交试验因素水平"

水平因素
x1/Nx2/MPax3/mmx4/mmx5/(km·h-1
14 0000.2343.640
24 5000.2565.650
35 0000.2787.660
45 5000.29109.670

表2

正交试验结果"

试验编号试验参数试验指标
x1x2x3x4x5FxFyFz
1111111 104.816 41 865.509 43 620.265 2
212222936.068 81 584.363 22 941.541 1
313333429.401 71 036.253 11 762.497 9
414444183.030 4212.911 0473.129 2
521234610.756 5800.652 91 611.070 2
622143981.650 11 701.306 13 120.232 6
723412903.351 71 502.759 62 845.741 7
8243211 198.141 71 962.085 23 757.652 7
9313421 397.311 81 832.173 83 684.340 5
10324311 624.036 72 026.572 14 198.854 5
1133124900.835 01 331.454 92 590.056 5
1234213920.261 61 645.599 33 024.884 2
13414231 119.515 31 422.594 13 030.685 2
1442314819.354 6910.036 51 901.389 9
15432412 041.706 22 346.287 44 976.508 0
16441321 683.228 92 342.364 24 644.339 8

表3

纵向力极差分析结果"

试验结果x1x2x3x4x5
K1j2 653.317 34 232.400 04 670.530 53 747.784 25 968.700 9
K2j3 693.900 04 361.110 24 508.793 14 154.560 84 919.961 3
K3j4 842.445 14 275.294 63 844.209 74 347.423 93 450.828 7
K4j5 663.804 93 984.662 63 829.934 14 603.698 62 513.976 6
Rj3 010.487 6376.447 6840.596 4855.914 43 454.724 3

表4

侧向力极差分析结果"

试验结果x1x2x3x4x5
K1j4 699.036 85 920.930 26 320.864 55 923.904 88 200.454 2
K2j5 966.803 86 222.277 96 376.902 76 300.497 37 261.660 7
K3j6 835.800 16 216.755 05 740.548 86 205.842 35 805.752 6
K4j7 021.282 26 162.959 75 164.836 76 092.678 43 255.055 4
Rj2 322.245 4301.347 71 212.066 0376.592 64 945.398 9

表5

垂向力极差分析结果"

试验结果x1x2x3x4x5
K1j8 797.433 411 946.361 113 974.894 111 392.281 016 553.280 4
K2j11 334.697 212 162.018 112 554.003 512 319.935 514 115.963 1
K3j13 498.135 712 174.804 111 105.881 012 216.762 410 938.299 9
K4j14 552.922 911 900.005 910 548.410 612 254.210 36 575.645 8
Rj5 655.489 5274.798 23 426.483 5957.654 59 977.634 6

图17

因素与指标趋势图"

表6

偏相关分析结果"

参数纵向力侧向力垂向力
相关性显著性相关性显著性相关性显著性
轮胎载荷0.98200.85900.9490
充气压力-0.3870.2140.1520.6360.0190.954
水膜厚度-0.850-0.8270.0010.8320.001
沟槽深度0.8130.0010.0880.786-0.3420.277
行驶速度-0.9860-0.96100.9320

表7

拟合度检验"

试验指标R2F显著性
Fx0.983156.4581.294 3×10-9
Fy0.94366.4919.549 3×10-8
Fz0.971135.5384.607 2×10-9

表8

结果对比"

参数UA模型仿真模型误差/%
纵向力/N740.373686.0297.3
侧向力/N1 121.9281 175.9444.8
1 Dolwichai P, Limtragool J. The effect of tire treads shape to stick-slip phenomenon in frictional contact[C]∥The 20th Conference of MENETT, Nakorn Ratchasima, Thailand, 2006: 18-20.
2 El-Sayegh Z, El-Gindy M. Cornering characteristics of a truck tire on wet surface using finite element analysis and smoothed-particle hydrodynamics[J]. International Journal of Dynamics and Control, 2018, 6(4): 1567-1576.
3 El-Sayegh Z, El-Gindy M. Sensitivity analysis of truck tyre hydroplaning speed using FEA-SPH model[J]. International Journal of Vehicle Systems Modelling and Testing, 2017, 12(1/2): 143-161.
4 Jeong J Y, Jeong H Y. Hydroplaning simulation of a tire in thin water using fem and an estimation method and its application to skid number estimation[J]. International Journal of Automotive Technology, 2013, 14(2): 325-331.
5 Ong G P, Fwa T F. Mechanistic interpretation of braking distance specifications and pavement friction requirements[J]. Transportation Research Record, 2010, 2155(1): 145-157.
6 Fwa T F, Anupam K, Ong G P. Relative effectiveness of grooves in tire and pavement for reducing vehicle hydroplaning risk[J]. Transportation Research Record, 2010, 2155(1): 73-81.
7 陈磊,周海超,潘公宇. 轮胎花纹凹坑非光滑表面对抗滑水性能的影响分析[J]. 现代制造工程, 2019, 19(1): 23-31.
Chen Lei, Zhou Hai-chao, Pan Gong-yu. Influence analysis of bionic pit non-smooth surface pattern on tire hydroplaning performance[J]. Modern Manufacturing Engineering, 2019, (1): 23-31.
8 杨建,王国林,周海超,等. 仿生非光滑花纹沟对轮胎抗滑水性能的影响[J]. 华中科技大学学报: 自然科学版, 2015, 43(2): 21-25.
Yang Jian, Wang Guo-lin, Zhou Hai-chao, et al. Study on influence of bionic non-smooth pattern groove on tire anti-hydroplaning performance[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(2): 21-25.
9 Zhou H C, Zhai H H, Ding Y M, et al. Numerical investigation of passive control flow to improve tire hydroplaning performance using a V-riblet non-smooth surface[J]. Advances in Mechanical Engineering, 2017, 9(11): 1-13.
10 黄晓明,刘修宇,曹青青,等. 积水路面轮胎部分滑水数值模拟[J]. 湖南大学学报: 自然科学版, 2018, 45(9): 113-121.
Huang Xiao-ming, Liu Xiu-yu, Cao Qing-qing, et al. Numerical simulation of tire partial hydroplaning on flooded pavement[J]. Journal of Hunan University (Natural Sciences), 2018, 45(9): 113-121.
11 季天剑,黄晓明,刘清泉. 部分滑水对路面附着系数的影响[J]. 交通运输工程学报, 2003, 3(4): 10-12.
Ji Tian-jian, Huang Xiao-ming, Liu Qing-quan. Part hydroplaning effect on pavement friction coefficient[J]. Journal of Traffic and Transportation Engineering, 2003, 3(4): 10-12.
12 董斌. 部分滑水条件下高速公路车辆行驶安全性研究[D].重庆: 重庆交通大学土木建筑学院, 2011.
Dong Bin. Study of safety drive on expressway under partly hydroplaning[D]. Chongqing: School of Civil Engineering and Architecture, Chongqing Jiaotong University, 2011.
13 Fiala E. Seitenkraefte am rollenden Luftreifen[J]. Verein Deutscher Ingenieure, 1954, 96(29): 973-979.
14 刘青,郭孔辉,陈秉聪. 轮胎刷子模型分析Ⅰ.稳态侧偏刷子模型[J]. 农业机械学报, 2000, 31(1): 19-22.
Liu Qing, Guo Kong-hui, Chen Bing-cong. Review of tire brush models I. Steady state cornering brush models[J]. Transactions of the Chinese Society for Agricultural Machinery, 2000, 31(1): 19-22.
15 郭孔辉. 汽车轮胎动力学[M]. 北京: 科学出版社, 2018.
16 郭孔辉,李宁,庄晔. 轮胎侧向力影响因素试验[J]. 农业机械学报, 2011, 42(12): 1-5.
Guo Kong-hui, Li Ning, Zhuang Ye. Test on factors of tire lateral force[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(12): 1-5.
17 Horne W B, Joyner U T. Pneumatic tire hydroplaning and some effects on vehicle performance[J]. SAE Transactions, 1966, 74: 623-650.
18 Horne W B, Yager T J, Ivey D L. Recent studies to investigate effects of tire footprint aspect ratio on dynamic hydroplaning speed[J]. ASTM Special Technical Publication, 1986, 929: 26-46.
19 Gim G, Nikravesh P E. An analytical model of pneumatic tyres for vehicle dynamic simulations. Part 1: pure slips[J]. International Journal of Vehicle Design, 1990, 11(6): 589-618.
20 Gim G. An analytical model of pneumatic tyres for vehicle dynamic simulations. Part 2: comprehensive slips[J]. International Journal of Vehicle Design of Vehicle Design, 1991, 12(1): 19-39.
21 周海超,陈磊,翟辉辉,等. 基于CFD的轮胎滑水及其性能影响因素分析[J]. 重庆交通大学学报: 自然科学版, 2017, 36(1): 110-116.
Zhou Hai-chao, Chen Lei, Zhai Hui-hui, et al. Research on flow field and influencing factors of tire hydroplaning based on CFD method[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(1): 110-116.
22 张丽霞,郑超艺,杨朝会,等. 湿滑路面汽车轮胎滑水性能影响因素仿真[J]. 科学技术与工程, 2020, 20(30): 12589-12595.
Zhang Li-xia, Zheng Chao-yi, Yang Chao-hui, et al. Simulation on factors affecting hydroplaning performance of vehicle tire on wet pavement[J]. Science Technology and Engineering, 2020, 20(30): 12589-12595.
23 庄楚强,何春雄. 应用数理统计基础[M]. 广州: 华南理工大学出版社, 2006.
24 王婷婷. 严寒地区居民用能行为对住宅能耗影响的偏相关分析[J]. 建筑与文化, 2021, 18(10): 195-197.
Wang Ting-ting. Partial correlation analysis of the influence of residents' energy-using behavior on energy consumption in severe cold region[J]. Architecture and Culture, 2021, 18(10): 195-197.
[1] 黄玲,崔躜,游峰,洪佩鑫,钟浩川,曾译萱. 适用于多车交互场景的车辆轨迹预测模型[J]. 吉林大学学报(工学版), 2024, 54(5): 1188-1195.
[2] 郭洪艳,王连冰,赵旭,戴启坤. 考虑侧向运动的整车质量与道路坡度估计[J]. 吉林大学学报(工学版), 2024, 54(5): 1175-1187.
[3] 陆玉凯,袁帅科,熊树生,朱绍鹏,张宁. 汽车漆面缺陷高精度检测系统[J]. 吉林大学学报(工学版), 2024, 54(5): 1205-1213.
[4] 汪少华,张启睿,施德华,殷春芳,李春. 双行星排式混合动力传动系统非线性振动响应特性分析[J]. 吉林大学学报(工学版), 2024, 54(4): 890-901.
[5] 高镇海,蔡荣贵,孙天骏,于桐,赵浩源,班浩. 人机共驾下的驾驶行为数据滤波方法[J]. 吉林大学学报(工学版), 2024, 54(3): 589-599.
[6] 谢宪毅,王禹涵,金立生,赵鑫,郭柏苍,廖亚萍,周彬,李克强. 基于改变控制时域时间步长的智能车轨迹跟踪控制[J]. 吉林大学学报(工学版), 2024, 54(3): 620-630.
[7] 邓小林,杨馥模,覃善甘. 新型仿竹六边形梯度层级多胞管耐撞性对比分析[J]. 吉林大学学报(工学版), 2024, 54(2): 333-345.
[8] 王毅刚,王玉鹏,张昊,赵思安. 高速列车转向架区域气动噪声源识别与分析[J]. 吉林大学学报(工学版), 2024, 54(2): 346-355.
[9] 聂建军,侯军凯,解晓琳,鄢鸿桢. 新型巡检机器人移动底盘设计及越障性能分析[J]. 吉林大学学报(工学版), 2024, 54(2): 356-364.
[10] 胡宏宇,张慧珺,姚荣涵,陈国迎,高菲. L3级自动驾驶接管过程驾驶员情景意识研究[J]. 吉林大学学报(工学版), 2024, 54(2): 410-418.
[11] 吴骁,史文库,郭年程,赵燕燕,陈志勇,李鑫鹏,孙卓,刘健. 基于Ease off的准双曲面齿轮多目标优化[J]. 吉林大学学报(工学版), 2024, 54(1): 76-85.
[12] 王铁,李旭东,田程,赵宏伟. 基于多轴载荷投影构建轮辋双轴疲劳损伤模型[J]. 吉林大学学报(工学版), 2024, 54(1): 99-104.
[13] 李旭东,王新宇,田程,张新峰,牛治慧,赵志强. 基于用户关联的车辆耐久性载荷谱编制[J]. 吉林大学学报(工学版), 2024, 54(1): 66-75.
[14] 陈兆玮,蒲前华. 弹性车轮对大跨斜拉桥车桥耦合振动的抑制特性[J]. 吉林大学学报(工学版), 2023, 53(9): 2519-2532.
[15] 刘平义,李晓婷,高偌霖,李海涛,魏文军,王亚. 车辆侧倾驱动机构设计与试验[J]. 吉林大学学报(工学版), 2023, 53(8): 2185-2192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!