吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 297-306.doi: 10.13229/j.cnki.jdxbgxb.20230267
• 计算机科学与技术 • 上一篇
Yuan-ning LIU1,2(
),Zi-nan ZANG1,2,Hao ZHANG1,2(
),Zhen LIU1,3
摘要:
本文提出了一种基于深度学习的方法UCEfold,用于预测核糖核酸(Ribonucleic acid,RNA)二级结构。UCEfold是一种同时采用“序列”和“图像”作为深度学习模型输入提取隐藏特征的全新方法,并在模型中加入一定的先验知识提高预测精度。在RNAStralign和ArchiveⅡ两个数据集上测试UCEfold模型,结果表明UCEfold性能显著优于传统方法,能够更准确地预测带假结的RNA序列,并具有较强的泛化能力,有效解决了传统算法复杂度高、效率低下且无法预测假结的瓶颈。
中图分类号:
| 1 | Crick F. Central dogma of molecular biology[J]. Nature, 1970, 227: 561-563. |
| 2 | Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription[J]. Science, 2007, 316: 1484-1488. |
| 3 | Sharp P. The centrality of RNA[J]. Cell, 2009, 136: 577-580. |
| 4 | Zuker M. Mfold Web server for nucleic acid folding and hybridization prediction[J]. Nucleic Acids Research, 2003, 31: 3406-3415. |
| 5 | Lorenz R, Bernhart S H, Höner Zu Siederdissen C, et al. ViennaRNA Package 2.0[J]. Algorithms for Molecular Biology, 2011, 6: No.26. |
| 6 | Mathews D H, Turner D H. Prediction of RNA secondary structure by free energy minimization[J]. Current Opinion in Structural Biology, 2006, 16: 270-278. |
| 7 | Huang L, Zhang H, Deng D, et al. LinearFold: linear-time approximate RNA folding by 5'-to-3' dynamic programming and beam search[J]. Bioinformatics, 2019, 35: i295-i304. |
| 8 | Brierley I, Pennell S, Gilbert R J C. Viral RNA pseudoknots: versatile motifs in gene expression and replication[J]. Nature Reviews Microbiology, 2007, 5: 598-610. |
| 9 | Bernhart S H, Hofacker I L, Will S, et al. RNAalifold: improved consensus structure prediction for RNA alignments[J]. BMC Bioinformatics, 2008, 9: No.474. |
| 10 | Knudsen B, Hein J. Pfold: RNA secondary structure prediction using stochastic context-free grammars[J]. Nucleic Acids Research, 2003, 31: 3423-3428. |
| 11 | Do C B, Woods D A, Batzoglou S. CONTRAfold: RNA secondary structure prediction without physics-based models[J]. Bioinformatics, 2006, 22: e90-e98. |
| 12 | Zakov S, Goldberg Y, Elhadad M, et al. Rich parameterization improves RNA structure prediction. [J]. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 2011, 6577: 546-562. |
| 13 | Zhang H, Zhang C, Li Z, et al. A new method of RNA secondary structure prediction based on convolutional neural network and dynamic programming[J]. Frontiers in Genetics, 2019, 10: No.467 |
| 14 | Chen X, Li Y, Umarov R, et al. RNA secondary structure prediction by learning unrolled algorithms [C]∥Proceedings of the International Conference on Learning Representations(ICLR), Addis Ababa, Ethiopia, 2020: 1-19. |
| 15 | Sato K, Akiyama M, Sakakibara Y. RNA secondary structure prediction using deep learning with thermodynamic integration[J]. Nature Communications, 2021, 12(1): No. 941. |
| 16 | Singh J, Hanson J, Paliwal K, et al. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning[J]. Nature Communications, 2019, 10(1): No. 5407. |
| 17 | Tan Z, Fu Y, Sharma G, et al. TurboFold Ⅱ: RNA structural alignment and secondary structure prediction informed by multiple homologs[J]. Nucleic Acids Research, 2017, 45(20): 11570-11581. |
| 18 | Sloma M, Mathews D. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures[J]. RNA, 2016, 22(12): 1808-1818. |
| 19 | Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9: 1735-1780. |
| 20 | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000-6010. |
| 21 | Fu L, Cao Y, Wu J, et al. UFold: fast and accurate RNA secondary structure prediction with deep learning[J]. Nucleic Acids Research, 2022, 50(3): No.e14. |
| 22 | Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation [C]∥Proceedings of the Medical Image Computing and Computer-Assisted Intervention(MICCAI), Munich, Germany, 2015: 234-241. |
| [1] | 王勇,边宇霄,李新潮,徐椿明,彭刚,王继奎. 基于多尺度编码-解码神经网络的图像去雾算法[J]. 吉林大学学报(工学版), 2024, 54(12): 3626-3636. |
| [2] | 王清永,曲伟强. 基于线性规划的城市轨道交通运行调度优化算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3446-3451. |
| [3] | 高海龙,徐一博,侯德藻,王雪松. 基于深度异步残差网络的路网短时交通流预测算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3458-3464. |
| [4] | 王军,王华琳,黄博文,付强,刘俊. 基于联邦学习和自注意力的工业物联网入侵检测[J]. 吉林大学学报(工学版), 2023, 53(11): 3229-3237. |
| [5] | 周丰丰,颜振炜. 基于混合特征的特征选择神经肽预测模型[J]. 吉林大学学报(工学版), 2023, 53(11): 3238-3245. |
| [6] | 孙舒杨,程玮斌,张浩桢,邓向萍,齐红. 基于深度学习的两阶段实时显式拓扑优化方法[J]. 吉林大学学报(工学版), 2023, 53(10): 2942-2951. |
| [7] | 王生生,李晨旭,王翔宇,姚志林,刘一申,吴佳倩,杨晴然. 基于改进残差胶囊网络和麻雀搜索的脑瘤图像分类[J]. 吉林大学学报(工学版), 2022, 52(11): 2653-2661. |
| [8] | 周丰丰,张亦弛. 基于稀疏自编码器的无监督特征工程算法BioSAE[J]. 吉林大学学报(工学版), 2022, 52(7): 1645-1656. |
| [9] | 魏晓辉,苗艳微,王兴旺. Rhombus sketch:自适应和准确的流数据sketch[J]. 吉林大学学报(工学版), 2022, 52(4): 874-884. |
| [10] | 刘桂霞,裴志尧,宋佳智. 基于深度学习的蛋白质⁃ATP结合位点预测[J]. 吉林大学学报(工学版), 2022, 52(1): 187-194. |
| [11] | 宋荷庆,尤力强,宋元,王章野. 面向云端系统的可伸缩群体远程对外证明方法[J]. 吉林大学学报(工学版), 2021, 51(6): 2198-2206. |
| [12] | 董延华,刘靓葳,赵靖华,李亮,解方喜. 基于BPNN在线学习预测模型的扭矩实时跟踪控制[J]. 吉林大学学报(工学版), 2021, 51(4): 1405-1413. |
| [13] | 魏晓辉,汤钫宇,李洪亮. 地理分布数据中心的工作流经济高效资源分配[J]. 吉林大学学报(工学版), 2021, 51(4): 1349-1357. |
| [14] | 魏晓辉,周长宝,沈笑先,刘圆圆,童群超. 机器学习加速CALYPSO结构预测的可行性[J]. 吉林大学学报(工学版), 2021, 51(2): 667-676. |
| [15] | 陈蔓,钟勇,李振东. 隐低秩结合低秩表示的多聚焦图像融合[J]. 吉林大学学报(工学版), 2020, 50(1): 297-305. |
|
||