吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (11): 3229-3237.doi: 10.13229/j.cnki.jdxbgxb.20221027

• 计算机科学与技术 • 上一篇    下一篇

基于联邦学习和自注意力的工业物联网入侵检测

王军(),王华琳,黄博文,付强,刘俊()   

  1. 沈阳化工大学 计算机科学与技术学院,沈阳 110142
  • 收稿日期:2022-08-13 出版日期:2023-11-01 发布日期:2023-12-06
  • 通讯作者: 刘俊 E-mail:wj_software@hotmail.com;1198382898@qq.com
  • 作者简介:王军(1978-),男,教授,博士.研究方向:工业网络安全.E-mail:wj_software@hotmail.com
  • 基金资助:
    辽宁省“百千万人才工程”项目(辽人社[2019]45号);辽宁省自然基金项目(2022-MS-291);辽宁省教育厅科研项目(LJ2020024)

Intrusion detection for industrial internet of things based on federated learning and self-attention

Jun WANG(),Hua-lin WANG,Bo-wen HUANG,Qiang FU,Jun LIU()   

  1. College of Computer Science and Technology,Shenyang University of Chemical Technology,Shenyang 110142,China
  • Received:2022-08-13 Online:2023-11-01 Published:2023-12-06
  • Contact: Jun LIU E-mail:wj_software@hotmail.com;1198382898@qq.com

摘要:

为解决工业物联网网络拓扑结构相对固定、特征低维、数据分布不均衡且相关性低,导致工业分布式环境下入侵检测模型训练效果差的问题,提出了一种基于联邦深度学习算法的工业物联网入侵检测模型——Fedformer。首先,引入并改进Transformer网络模型的编码器结构并嵌合卷积神经网络和门控循环单元,利用注意力机制为工业物联网构建了入侵检测模型;其次,将检测模型融合联邦学习框架,允许多个工业物联网共同构建一个全面的入侵检测模型。在保护本地数据隐私的前提下,提高对工业物联网网络攻击的检测准确率并降低误报率。实验结果表明:在工业网络环境下Fedformer的检测准确率达到98.09%,误报率降低到8.31%。

关键词: 计算机应用, 工业物联网, 入侵检测, 联邦深度学习, 自注意力

Abstract:

Aiming at the problems of fixed network topology, low dimensionality, uneven data distribution and low correlation, the training effect of intrusion detection model in industrial distributed environment is poor. In this paper, Fedformer, a federated deep learning algorithm based intrusion detection model for industrial Internet of Things (IOT), is proposed. Firstly, the encoder structure of Transformer network model is introduced and improved, and the convolutional neural network and gated cyclic unit are integrated, and the intrusion detection model for industrial IOT is constructed by using the attention mechanism. Secondly, the detection model is integrated with the federated learning framework, which allows multiple industrial IOT to jointly build a comprehensive intrusion detection model. Under the premise of protecting the privacy of local data, the detection accuracy of industrial IOT network attacks is improved and the false positive rate is reduced. Experimental results show that the detection accuracy of Fedformer in the industrial network environment is 98.09%, and the false positive rate is reduced to 8.31%.

Key words: computer application, industrial internet of things, intrusion detection, federated deep learning, self-attention

中图分类号: 

  • TP399

图1

技术路线图"

图2

训练流程图"

图3

模型结构图"

图4

注意力机制模块"

表1

混淆矩阵"

实际情况入侵入侵正常
入侵TPFP
正常FNTN

表2

UNSW-NB15中不同类型的常见攻击数量和比例"

标签训练集测试集
数量占比/%数量占比/%
Normal56 00031.9437 00044.94
Exploits33 39319.0411 13213.51
Dos12 2646.994 0894.97
Backdoor1 7461.005830.71
Analysis2 0001.146770.82
Fuzzers18 18410.376 0627.36
Generic40 00022.8118 87122.92
Reconnaissance10 4925.983 4964.25
Shellcode1 1330.653780.46
Worms1300.07440.05

表3

真实天然气管道数据类型"

攻击名称缩写数量
正常Normal (0)61 156
Na?ve恶意响应注入NMRI (1)2 763
复杂恶意响应注入CMRI (2)15 466
恶意状态命令注入MSCI (3)782
恶意参数命令注入MPCI (4)7 637
恶意函数代码注入MFCI (5)573
拒绝服务DOS (6)1 837
侦察攻击Recon (7)6 805

图5

传统集中式训练与Fedformer准确率对比"

表4

工业数据集下联邦深度学习对比实验"

模型文献[19文献[20Fedformer
PrecisionRecallF1PrecisionRecallF1PrecisionRecallF1
Normal (0)0.94710.97960.96300.82450.81290.81690.95030.98260.9655
NMRI (1)1.00000.92760.93701.00000.07970.14771.00000.93250.9629
CMRI (2)0.93490.98090.95730.56911.00000.72970.94570.98210.9635
MSCI (3)0.93020.95240.94120.00000.00000.00000.97140.95770.9645
MPCI (4)0.96840.97870.97610.00000.00000.00000.97620.98110.9787
MFCI (5)1.00001.00001.00001.00000.96770.98360.96120.90200.9340
DOS (6)1.00000.96190.98060.99010.98040.98900.98960.92230.9810
Recon (7)0.99421.00001.00001.00001.00001.00001.00001.00001.0000

图6

其他联邦深度学习与Fedformer准确率对比"

图7

其他联邦深度学习与Fedformer误报率对比"

表5

UNSW-NB15数据集实验数据"

指标文献[18文献[19文献[21文献[20Fedformer
Precision0.93480.91740.9730.97360.979
Recall0.92190.92350.9690.97180.973
F10.92010.91930.9670.96750.968
1 Wang S, Jiang X, Wu Y, et al. Expectation propagation logistic regression(EXPLORER): distributed privacy-preserving online model learning[J]. Biomed Inform, 2013, 46(3):480-496.
2 Gao D S, Liu Y, Huang A B, et al. Privacy-preserving heterogeneous federated transfer learning[C]∥IEEE International Conference on Big Data, Los Angeles, USA, 2019: 2552-2559.
3 IEEE Std 3652 1—2020. IEEE Guide for Architectural Framework and Application of Federated Machine Learning [S].
4 Mnih V, Heess N, Graves A, et al. Recurrent models of visual attention[J]. Advances in Neural Information Processing Systems, 2014, 3: 1-12.
5 Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. CoRR, 2014, 1: arXiv.1409.0473.
6 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. NIPS, 2017, 1: arXiv.1706.03762.
7 Liu Y, Pi D. A novel kernel SVM algorithm with game theory for network intrusion detection[J]. TIIS, 2017, 11(8): 4043-4060.
8 燕昺昊, 韩国栋.基于深度循环神经网络和改进SMOTE算法的组合式入侵检测模型[J]. 网络与信息安全学报, 2018, 4(7): 48-59.
Yan Bing-hao, Han Guo-dong. Combined intrusion detection model based on deep recurrent neural network and improved SMOTE algorithm[J]. Journal of Network and Information Security, 2018, 4(7): 48-59.
9 Wu K H, Chen Z G, Li W. A novel intrusion detection model for a massive network using convolutional neural networks[J]. IEEE Access, 2018(6): 50850-50859.
10 李贝贝, 宋佳芮, 杜卿芸, 等. DRL-IDS:基于深度强化学习的工业物联网入侵检测系统[J]. 计算机科学, 2021, 48(7): 47-54.
Li Bei-bei, Song Jia-rui, Du Qing-yun, et al. DRL-IDS: intrusion detection system for industrial internet of things based on deep reinforcement learning[J]. Computer Science, 2021, 48(7): 47-54.
11 石乐义, 侯会文, 徐兴华, 等. 基于特征选择和时间卷积网络的工业控制系统入侵检测研究[J]. 工程科学与技术, 2022, 54(6): 238-247.
Shi Le-yi, Hou Hui-wen, Xu Xing-hua, et al. Intrusion detection of industrial control systems based on feature selection and temporal convolution network[J]. Engineering Science and Technology, 2022, 54(6): 238-247.
12 Nguyen T D, Marchal S, Miettinen M, et al. DïoT: a federated self-learning anomaly detection system for IoT[C]∥IEEE 39th International Conference on Distributed Computing Systems, Dallas, USA, 2019: 756-767.
13 Liu Y, Kumar N, Xiong Z H, et al. Communication-efficient federated learning for anomaly detection in industrial internet of things[C]∥Proceedings of 2020 IEEE Global Communication Conference, Piscataway, 2020: 1-6.
14 Wang X D, Garg S, Lin H, et al. Towards accurate anomaly detection in industrial internet-of-things using hierarchical federated learning[J]. IEEE Internet of Things Journal, 2022, 9(10): 7110-7119.
15 Moustafa N, Slay J. UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]∥Military Communications and Information Systems Conference, Canberra, Australia, 2015: 1-6.
16 Morris T, Gao W. Industrial control system traffic data sets for intrusion detection research[C]∥International Conference on Critical Infrastructure Protection, Arlington, USA, 2014: 65-78.
17 Yang Q, Liu Y, Chen T, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1-19.
18 张行健, 王怀彬. 基于CNN-GRU的入侵检测算法研究[J]. 天津理工大学学报, 2022, 38(1): 37-42.
Zhang Xing-jian, Wang Huai-bin. Research on intrusion detection algorithm based on CNN-GRU[J]. Journal of Tianjin University of Technology, 2022, 38(1): 37-42.
19 郑伟发. 基于CNN-LSTM混合模型的入侵检测算法研究[J]. 网络安全技术与应用, 2020(5): 61-64.
Zheng Wei-fa. Research on intrusion detection algorithm based on CNN-LSTM hybrid model[J]. Network Security Technology and Application, 2020(5): 61-64.
20 Liu Y, Garg S, Nie J T, et al. Deep anomaly detection for timeseries data in industrial IoT: a communication efficient on device federated learning approach[J]. IEEE Internet of Things Journal, 2021, 8(8): 6348-6358.
21 Li B, Wu Y, Song J, et al. DeepFed: federated deep learning for intrusion detection in industrial cyber-physical systems[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5615-5624.
[1] 霍光,林大为,刘元宁,朱晓冬,袁梦,盖迪. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600.
[2] 何颖,王卓然,周旭,刘衍珩. 融合社交地理信息加权矩阵分解的兴趣点推荐算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2632-2639.
[3] 张云佐,董旭,蔡昭权. 拟合下肢几何特征的多视角步态周期检测[J]. 吉林大学学报(工学版), 2023, 53(9): 2611-2619.
[4] 肖明尧,李雄飞,朱芮. 基于NSST域像素相关分析的医学图像融合[J]. 吉林大学学报(工学版), 2023, 53(9): 2640-2648.
[5] 赵亚慧,李飞雨,崔荣一,金国哲,张振国,李德,金小峰. 基于跨语言预训练模型的朝汉翻译质量评估[J]. 吉林大学学报(工学版), 2023, 53(8): 2371-2379.
[6] 车翔玖,徐欢,潘明阳,刘全乐. 生物医学命名实体识别的两阶段学习算法[J]. 吉林大学学报(工学版), 2023, 53(8): 2380-2387.
[7] 王连明,吴鑫. 基于姿态估计的物体3D运动参数测量方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2099-2108.
[8] 张则强,梁巍,谢梦柯,郑红斌. 混流双边拆卸线平衡问题的精英差分进化算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1297-1304.
[9] 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426.
[10] 刘培勇,董洁,谢罗峰,朱杨洋,殷国富. 基于多支路卷积神经网络的磁瓦表面缺陷检测算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1449-1457.
[11] 姜宇,潘家铮,陈何淮,符凌智,齐红. 基于分割方法的繁体中文报纸文本检测[J]. 吉林大学学报(工学版), 2023, 53(4): 1146-1154.
[12] 吕卫,韩镓泽,褚晶辉,井佩光. 基于多模态自注意力网络的视频记忆度预测[J]. 吉林大学学报(工学版), 2023, 53(4): 1211-1219.
[13] 于鹏,朴燕. 基于多尺度特征的行人重识别属性提取新方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1155-1162.
[14] 潘弘洋,刘昭,杨波,孙庚,刘衍珩. 基于新一代通信技术的无人机系统群体智能方法综述[J]. 吉林大学学报(工学版), 2023, 53(3): 629-642.
[15] 何颖,樊俊松,王巍,孙庚,刘衍珩. 无人机空地安全通信与航迹规划的多目标联合优化方法[J]. 吉林大学学报(工学版), 2023, 53(3): 913-922.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] 杨庆芳,陈林 . 交通控制子区动态划分方法[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[10] 李成,刘治华,张平 . 具有初始位移的两层转子结构复合材料储能飞轮的应力及位移分析[J]. 吉林大学学报(工学版), 2007, 37(04): 828 -832 .