吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (2): 401-418.doi: 10.13229/j.cnki.jdxbgxb.20231138

• 综述 •    

城市轨道交通乘务计划优化编制研究综述

户佐安1,2,3(),周姝1,张宇昂1   

  1. 1.西南交通大学 交通运输与物流学院,成都 611756
    2.西南交通大学 综合交通大数据应用技术国家工程实验室,成都 611756
    3.西南交通大学 综合交通运输智能化国家地方联合工程实验室,成都 611756
  • 收稿日期:2023-10-22 出版日期:2025-02-01 发布日期:2025-04-16
  • 作者简介:户佐安(1979-),男,副教授,博士.研究方向:运输组织理论及系统优化.E-mail:huzuoan@swjtu.edu.cn
  • 基金资助:
    四川省自然科学基金项目(24NSFSC0810);国家重点研发计划项目(2018YFB1601400)

Review on crew planning optimization for urban rail transit

Zuo-an HU1,2,3(),Shu ZHOU1,Yu-ang ZHANG1   

  1. 1.School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 611756,China
    2.National Engineering Laboratory of Integrated Transportation Big Data Application Technology,Southwest Jiaotong University,Chengdu 611756,China
    3.National United Engineering Laboratory of Integrated and Intelligent Transportation,Southwest Jiaotong University,Chengdu 611756,China
  • Received:2023-10-22 Online:2025-02-01 Published:2025-04-16

摘要:

乘务计划是城市轨道交通运营计划的重要组成部分,其优化编制方法已成为交通运输领域的研究热点。为推动城市轨道交通乘务计划优化编制的研究进程,本文对国内外相关文献进行了全面梳理。针对数学模型,系统总结了基于“集合关系”和基于“网络构建”这两类典型的建模方法;针对求解算法,分为传统整数规划算法、基于列生成的数学规划方法、图与网络相关算法和智能启发式算法进行了详细评述。最后,针对现存不足和挑战,提出该领域未来的研究方向。

关键词: 城市轨道交通, 乘务计划, 数学模型, 优化算法

Abstract:

The crew schedule is a crucial component of urban rail transit operation plannings, and its optimization methods have become a hot research topic in the field of transportation. To promote the research progress in crew planning optimization for urban rail transit, reviewing relevant literatures from both domestic and international sources. Regarding mathematical models, systematically summarizing two typical modeling approaches which are respectively based on "set relations" and "network graph construction"; Concerning solution algorithms, provideing detailed assessments of traditional integer programming algorithm, mathematical programming method based on column generation, graph and network-related algorithm, and intelligent heuristic algorithm. Finally, addressing current research deficiencies and challenges to propose future research directions.

Key words: urban rail transit, crew planning problem, mathematical model, optimization algorithm

中图分类号: 

  • U292.8

图1

城市轨道交通乘务计划问题构成要素"

图2

城市轨道交通乘务计划优化编制流程图"

表1

不同轨道交通运输方式乘务管理相关的特点对比"

对比特点普速铁路高速铁路

城市轨道交通

(以地铁为例)

线路条件乘务基地两端和中间线路两端线路两端
站间距离很长较长很短
运营情况时刻表安排较灵活固定固定
运行交路较长
开行频率较低较高
乘务管理人员类型工种多工种多主要为司机
乘务片段长度较长
班次所含片段数较少
冗余时间很长较长较短
跨夜值乘常有较少一般没有

表2

URT-CPP代表性期刊论文一览表"

文献计划阶段建模方法求解算法文献计划阶段建模方法求解算法
IPMGNAHCGOtherIPMGNAHCGOther
33CSNFP32CRNFP
34CSSPP35CSother
36CSSPP37CS-
38CSSPP39CSSCP
40CSSCP41CSSCP
42CSSPP43CSSCP
44CRSPP45CSSCP
46CRSPP47CSSCP
48CRSPP49CSNFP
50CSSPP, NFP51CSSPP
52CS⊕CRSCP, NFP53CS⊕CRNFP
54CSSCP, NFP55CS⊕CRNFP
56CSotherCP57CSother
58CSSPP59CSNFP
60CSSPP61CSSCP,NFP
62CSother63CS⊕VSSCP,SPP, NFP
64CSNFP65CSSCP,NFP
66CRSPP, NFP67CS∪CRNFPADMM
30CSNFP9CS⊕CRNFPADMM
31CSSPP, other

图3

城市轨道交通乘务计划编制优化研究进程梳理"

图4

城市轨道交通乘务计划优化编制排班约束解释图"

表3

运用智能启发式算法的URT-CPP文献总结"

文献智能启发式算法(H)(最大)求解规模算法特点
GATSPSOACOOther
35814个乘务片段基于贪婪机制的交叉和变异算子;染色体分为表达和未表达两部分
41830个乘务片段染色体长度可自适应改变
38求解得到20个乘务班次遗传算法中嵌套双向匹配法
60686个乘务作业段遗传禁忌混合搜索算法
31

高峰时段开行列车77列

非高峰时段开行列车41列

夜班编制采用二分匹配算法;

日班编制采用禁忌搜索算法

34138个乘务作业段(日班)

夜班编制采用Hungarian算法

日班编制采用禁忌搜索算法

37EM;GM900个乘务片段对比了3种启发式算法
46

每日早班10个,白班15个,夜班10个

轮转周期:1周,可用司机:48名

初始方案通过贪婪算法生成
369列车底 182个乘务片段

下层模型采用改进Dijkstra算法;

上层模型采用离散粒子群算法

48SE

每日100个值乘班次,20个休息班次

轮转模式:六班五运转

粒子群与模拟进化的混合算法
67

686个乘务作业段

轮转周期:7天 轮转模式:四班三运转

排班阶段采用基于ADMM的对偶分解算法;

轮班阶段采用改进粒子群算法

64248个乘务作业段将问题转换为类TSP问题
51724个乘务作业段基于蚁群路径选择策略的优化算法
39830个乘务片段考虑中国就餐和休息制度,基于启发式思想的班次生成与选择方式
53LR2030个乘务作业段(1周)拉格朗日松弛启发式算法
45GM830个乘务片段灰色关联分析融入可变迭代贪婪算法
59F&R日开行车次超300趟进行聚类操作简化模型
1 Kang L, Zhu X, Sun H, et al. Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks[J]. Transportation Research Part B: Methodological, 2016, 93: 17-36.
2 中国城市轨道交通协会.城市轨道交通2022年度统计和分析报告[J]. 城市轨道交通, 2023(4): 13-15.
China Association of Metros. 2022 Statistical and analysis report on urban rail transit[J]. China Metros, 2023(4): 13-15.
3 Yang X, Chen A, Ning B, et al. Bi-objective programming approach for solving the metro timetable optimization problem with dwell time uncertainty[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 97: 22-37.
4 Qi J, Yang L, Di Z, et al. Integrated optimization for train operation zone and stop plan with passenger distributions[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 109: 151-173.
5 Corman F, D´Ariano A, Marra A D, et al. Integrating train scheduling and delay management in real-time railway traffic control[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 105: 213-239.
6 Yue Y, Han J, Wang S, et al. Integrated train timetabling and rolling stock scheduling model based on time-dependent demand for urban rail transit[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(10): 856-873.
7 Lusby R M, Larsen J, Ehrgott M, et al. Railway track allocation: models and methods[J]. OR Spectrum, 2011, 33(4): 843-883.
8 Yang L, Qi J, Li S, et al. Collaborative optimization for train scheduling and train stop planning on high-speed railways[J]. Omega, 2016, 64: 57-76.
9 Feng T, Lusby R M, Zhang Y, et al. An ADMM-based dual decomposition mechanism for integrating crew scheduling and rostering in an urban rail transit line[J]. Transportation Research Part C: Emerging Technologies, 2023, 149: 104081.
10 Zhou H, Qi J, Yang L, et al. Joint optimization of train scheduling and rolling stock circulation planning with passenger flow control on tidal overcrowded metro lines[J]. Transportation Research Part C: Emerging Technologies, 2022, 140: 103708.
11 Wang Y, Zhao K, D´Ariano A, et al. Real-time integrated train rescheduling and rolling stock circulation planning for a metro line under disruptions[J]. Transportation Research Part B: Methodological, 2021, 152: 87-117.
12 Yuan J, Gao Y, Li S, et al. Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line[J]. European Journal of Operational Research, 2022, 301(3): 855-874.
13 Zhao Y, Li D, Yin Y, et al. Integrated optimization of demand-driven timetable, train formation plan and rolling stock circulation with variable running times and dwell times[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 171: 103035.
14 Pan H, Yang L, Liang Z. Demand-oriented integration optimization of train timetabling and rolling stock circulation planning with flexible train compositions: a column-generation-based approach[J]. European Journal of Operational Research, 2023, 305(1): 184-206.
15 Nishi T, Sugiyama T, Inuiguchi M. Two-level decomposition algorithm for crew rostering problems with fair working condition[J]. European Journal of Operational Research, 2014, 237(2): 465-473.
16 Heil J, Hoffmann K, Buscher U. Railway crew scheduling: models, methods and applications[J]. European Journal of Operational Research, 2020, 283(2): 405-425.
17 Kasirzadeh A, Saddoune M, Soumis F. Airline crew scheduling: models, algorithms, and data sets[J]. Euro Journal on Transportation and Logistics, 2017, 6(2): 111-137.
18 Deveci M, Demirel N Ç. A survey of the literature on airline crew scheduling[J]. Engineering Applications of Artificial Intelligence, 2018, 74: 54-69.
19 Wen X, Sun X, Sun Y, et al. Airline crew scheduling: models and algorithms[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 149: 102304.
20 沈吟东, 钱壮, 李媛媛. 公共交通驾驶员调度研究综述[J]. 运筹学学报, 2021, 25(1): 1-16.
Shen Yin-dong, Qian Zhuang, Li Yuan-yuan. A survey on driver scheduling in public transportation[J]. Operations Research Transactions, 2021, 25(1): 1-16.
21 林枫. 固定区段轮乘制乘务交路计划编制模型及算法[J]. 铁道学报, 2019, 41(12): 10-18.
Lin Feng. Bilevel scale model and multi-objective multi-stage heuristic algorithm for crew scheduling based on fixed-section pooling mode[J]. Journal of the China Railway Society, 2019, 41(12): 10-18.
22 张哲铭, 王莹, 廖正文, 等. 基于时空状态网络的高速铁路乘务交路计划优化研究[J]. 铁道学报, 2019, 41(12): 1-11.
Zhang Zhe-ming, Wang Ying, Liao Zheng-wen, et al. Research on optimization of crew scheduling of high-speed railway based on time space state network[J]. Journal of the China Railway Society, 2019, 41(12): 1-11.
23 符卓, 袁雪莹, 车瑶. 高速动车组司机乘务交路优化编制方法[J]. 铁道学报, 2020, 42(7): 24-33.
Fu Zhuo, Yuan Xue-ying, Che Yao. Optimization method for high-speed eletric multiple unit crew scheduling[J]. Journal of the China Railway Society, 2020, 42(7): 24-33.
24 张增勇. 城市轨道交通乘务计划编制方法研究[D]. 北京:北京交通大学交通运输学院, 2014.
Zhang Zeng-yong. Modeling crew planning for urban rail transit systems[D]. Beijing: School of Traffic and Transportation,Beijing Jiaotong University, 2014.
25 许仲豪. 城市轨道交通乘务计划优化编制方法研究[D]. 北京: 北京交通大学交通运输学院, 2019.
Xu Zhong-hao. Study of the optimization algorithm of crew scheduling for urban rail transit[D]. Beijing: School of Traffic and Transportation,Beijing Jiaotong University, 2019.
26 罗红双. 网络化条件下城市轨道交通乘务计划编制方法研究[D]. 成都:西南交通大学交通运输与物流学院, 2019.
Luo Hong-shuang. Study on mothed of making crew planning of urban rail transit on network operation[D]. Chengdu: School of Transportation and Logistics, Southwest Jiaotong University, 2019.
27 Caprara A, Fischetti M, Toth P, et al. Algorithms for railway crew management[J]. Mathematical Programming, 1997, 79(1-3): 125-141.
28 Morgado E M, Martins J P. Scheduling and managing crew in the Portuguese railways[J]. Expert Systems with Applications, 1992, 5(3/4): 301-321.
29 Ball M, Bodin L, Dial R. A matching based heuristic for scheduling mass transit crews and vehicles[J]. Transportation Science, 1983, 17(1): 4-31.
30 Chu S C K, Chan E C H. Crew scheduling of light rail transit in Hong Kong: from modeling to implementation[J]. Computers & Operations Research, 1998, 25(11): 887-894.
31 Chew K L, Pang J, Liu Q, et al. An optimization based approach to the train operator scheduling problem at Singapore MRT[J]. Annals of Operations Research, 2001, 108(1): 111-122.
32 Sodhi M S, Norris S. A flexible, fast, and optimal modeling approach applied to crew rostering at London underground[J]. Annals of Operations Research, 2004, 127(1-4): 259-281.
33 李献忠, 徐瑞华. 基于时间耗费的城市轨道交通乘务排班优化[J]. 铁道学报, 2007, 2007(1): 21-25.
Li Xian-zhong, Xu Rui-hua. Optimization of crew scheduling for urban rail transportation based on time costs[J]. Journal of the China Railway Society, 2007, 2007(1): 21-25.
34 李献忠, 徐瑞华. 基于乘务广义费用的城市轨道交通排班[J]. 同济大学学报: 自然科学版, 2007(6): 750-754.
Li Xian-zhong, Xu Rui-hua. An optimal wide crew-related costs-based scheduling for crew of urban rail transportation[J]. Journal of Tongji University (Natural Science), 2007(6): 750-754.
35 Park T, Ryu K R. Crew pairing optimization by a genetic algorithm with unexpressed genes[J]. Journal of Intelligent Manufacturing, 2006, 17(4): 375-383.
36 张增勇, 毛保华, 杜鹏, 等. 基于惩罚费用的城市轨道交通乘务排班优化模型与算法[J]. 交通运输系统工程与信息, 2014, 14(2): 113-120.
Zhang Zeng-yong, Mao Bao-hua, Du Peng, et al. Urban rail transit crew scheduling model and algorithm based on punishment costs[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(2): 113-120.
37 Elizondo R, Parada V, Pradenas L, et al. An evolutionary and constructive approach to a crew scheduling problem in underground passenger transport[J]. Journal of Heuristics, 2010, 16(4): 575-591.
38 丰富, 陈绍宽, 杜鹏. 考虑时间均衡度的城市轨道交通乘务排班计划优化方法[J]. 交通运输系统工程与信息, 2014, 14(6): 164-170.
Feng Fu, Chen Shao-kuan, Du Peng. Time equitability-based crew scheduling optimization for urban rail transit[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(6): 164-170.
39 Chen S, Shen Y, Su X, et al. A crew scheduling with Chinese meal break rules[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(2): 90-95.
40 石俊刚, 史宏杰, 徐瑞华. 城市轨道交通乘务任务划分模型及算法研究[J]. 铁道学报, 2014, 36(5): 1-7.
Shi Jun-gang, Shi Hong-jie, Xu Rui-hua. Modeling and solving urban rail transit crew pairing problems[J]. Journal of the China Railway Society, 2014, 36(5): 1-7.
41 Shen Y, Peng K, Chen K, et al. Evolutionary crew scheduling with adaptive chromosomes[J]. Transportation Research Part B: Methodological, 2013, 56: 174-185.
42 石俊刚, 周峰, 徐瑞华. 城轨交通乘务任务配对的集合分割模型及算法[J]. 同济大学学报: 自然科学版, 2015, 43(2): 232-238.
Shi Jun-gang, Zhou Feng, Xu Rui-hua. A set segmentation model and algorithm for crew task pairing in urban rail transit[J]. Journal of Tongji University(Natural Science), 2015, 43(2): 232-238.
43 Han A F, Li E C. A constraint programming-based approach to the crew scheduling problem of the Taipei mass rapid transit system[J]. Annals of Operations Research, 2014, 223(1): 173-193.
44 石俊刚, 杨静, 周峰, 等. 基于任务均衡的城市轨道交通乘务任务轮转模型及算法[J]. 铁道学报, 2017, 39(9): 17-24.
Shi Jun-gang, Yang Jing, Zhou Feng, et al. Crew rostering model and algorithm based on balanced workload in urban rail transit[J]. Journal of the China Railway Society, 2017, 39(9): 17-24.
45 Peng K, Shen Y. A variable iterated greedy algorithm based on grey relational analysis for crew scheduling[J]. Scientia Iranica, 2018, 25(2): 831-840.
46 黄志远, 周峰, 张在龙. 基于可预知事件的城市轨道交通乘务轮转计划优化调整[J]. 交通运输系统工程与信息, 2017, 17(4): 111-117.
Huang Zhi-yuan, Zhou Feng, Zhang Zai-long. Optimizing adjustment of urban rail transit crew rostering plan based on predictable events[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 111-117.
47 Shen Y, Li J, Peng K. An estimation of distribution algorithm for public transport driver scheduling[J]. International Journal of Operational Research, 2017, 28(2): 245-262.
48 陈绍宽, 马卓然, 彭小波, 等. 基于工作强度均衡的地铁乘务轮班计划优化模型[J]. 交通运输系统工程与信息, 2018, 18(6): 81-87.
Chen Shao-kuan, Ma Zhuo-ran, Peng Xiao-bo, et al. Workload equitability-based optimum modeling for metro crew rostering[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(6): 81-87.
49 Janacek J, Kohani M, Koniorczyk M, et al. Optimization of periodic crew schedules with application of column generation method[J]. Transportation Research Part C: Emerging Technologies, 2017, 83: 165-178.
50 许仲豪, 杜鹏. 基于列生成的城市轨道交通乘务计划优化编制方法研究[J]. 铁道学报, 2019, 41(3): 25-32.
Xu Zhong-hao, Du Peng. A column generation-based crew scheduling optimization method for urban rail transit[J]. Journal of the China Railway Society, 2019, 41(3): 25-32.
51 Zhou W, Yang X, Deng L, et al. Crew scheduling considering both crew duty time difference and cost on urban rail system[J]. Promet-Traffic&Transportation, 2016, 28(5): 449-460.
52 金华, 陈绍宽, 刘爽, 等. 基于固定班制的地铁乘务计划一体化优化方法[J]. 西南交通大学学报, 2020, 55(5): 955-962.
Jin Hua, Chen Shao-kuan, Liu Shuang, et al.Integrated optimum crew planning in fixed shift system for subways[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 955-962.
53 Zhou J, Xu X, Long J, et al. Integrated optimization approach to metro crew scheduling and rostering[J]. Transportation Research Part C: Emerging Technologies, 2021, 123: 102975.
54 金华, 陈绍宽, 王志美, 等. 基于地铁乘务资源共享的排班计划优化方法[J]. 交通运输系统工程与信息, 2021, 21(2): 126-132.
Jin Hua, Chen Shao-kuan, Wang Zhi-mei, et al. Crew schedule optimization for urban rail transit with crew resources sharing[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(2): 126-132.
55 Zhou J, Xu X, Long J, et al. Metro crew planning with day-off pattern, duty type, and rostering scheme considerations[J]. Transportation Research Part C: Emerging Technologies, 2022, 143: 103832.
56 马亮, 徐晓英. 考虑便乘的地铁乘务任务配对的约束优化模型研究[J]. 铁道学报, 2021, 43(3): 25-33.
Ma Liang, Xu Xiao-ying. Research on constraint optimization model for metro crew pairing problem with passenger tasks[J]. Journal of the China Railway Society, 2021, 43(3): 25-33.
57 Fuentes M, Cadarso L, Marín Á. A new approach to crew scheduling in rapid transit networks[J]. Transportation Research Procedia, 2015, 10: 554-563.
58 陈霁岩, 潘寒川, 刘志钢, 等. 基于任务均衡的乘务排班计划优化编制方法研究[J]. 铁道运输与经济, 2021, 43(9): 101-107.
Chen Ji-yan, Pan Han-chuan, Liu Zhi-gang, et al. Research on optimization of crew scheduling based on task balance[J]. Railway Transport and Economy, 2021, 43(9): 101-107.
59 Fuentes M, Cadarso L, Marín Á. A hybrid model for crew scheduling in rail rapid transit networks[J]. Transportation Research Part B: Methodological, 2019, 125: 248-265.
60 薛锋, 李海, 梁鹏, 等. 基于遗传禁忌算法的城市轨道交通乘务任务配对研究[J]. 铁道运输与经济, 2022, 44(7): 103-109.
Xue Feng, LI Hai, Liang Peng, et al. Research on urban rail transit crew task pairing based on genetic tabu algorithm[J]. Railway Transport and Economy, 2022, 44(7): 103-109.
61 Jin H, Chen S, Ran X, et al. Column generation-based optimum crew scheduling incorporating network representation for urban rail transit systems[J]. Computers & Industrial Engineering, 2022, 169: 108155.
62 薛锋, 梁鹏, 李海, 等. 地铁乘务排班计划优化的最短路快速算法[J]. 铁道科学与工程学报, 2022, 19(9): 2532-2540.
Xue Feng, Liang Peng, Li Hai, et al. Optimization of subway crew scheduling based on shortest path faster algorithm[J]. Journal of Railway Science and Engineering, 2022, 19(9): 2532-2540.
63 Pan H, Liu Z, Yang L, et al. A column generation-based approach for integrated vehicle and crew scheduling on a single metro line with the fully automatic operation system by partial supervision[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 152: 102406.
64 苏铭, 刘兰芬, 杨信丰, 等. 基于TSP问题思想的城市轨道交通乘务排班计划研究[J]. 铁道运输与经济, 2022, 44(2): 131-138.
Su Ming, Liu Lan-fen, Yang Xin-feng, et al. Research on TSP-based crew scheduling plan for urban rail transit[J]. Railway Transport and Economy, 2022, 44(2): 131-138.
65 Neufeld J S, Scheffler M, Tamke F, et al. An efficient column generation approach for practical railway crew scheduling with attendance rates[J]. European Journal of Operational Research, 2021, 293(3): 1113-1130.
66 戚博洋, 潘寒川, 刘志钢, 等. 考虑司机偏好的城市轨道交通乘务轮班模型[J]. 深圳大学学报: 理工版, 2023, 40(2): 203-209.
Qi Bo-yang, Pan Han-chuan, Liu Zhi-gang, et al. Preference-oriented crew rostering optimization model for urban railway transit[J]. Journal of Shenzhen University (Science and Engineering), 2023, 40(2): 203-209.
67 Xue F, Zhang X, Hu P, et al. Metro crew planning with heterogeneous duty paths and period-cycle pattern considerations[J]. Computers & Industrial Engineering, 2023, 182: 109354.
68 Şahin G, Yüceoğlu B. Tactical crew planning in railways[J]. Transportation Research Part E: Logistics and Transportation Review, 2011, 47(6): 1221-1243.
69 潘寒川, 刘志钢, 吴强, 等. 考虑用餐约束的城市轨道交通乘务计划编制优化研究[J]. 铁道运输与经济, 2019, 41(1): 121-126.
Pan Han-chuan, Liu Zhi-qiang, Wu Qiang, et al. A study on the optimization of crew scheduling in urban rail transit with the meal constraint[J]. Railway Transport and Economy, 2019, 41(1): 121-126.
70 金华. 乘务资源共享条件下的城市轨道交通乘务计划优化研究[D]. 北京:北京交通大学交通运输学院, 2022.
Jin Hua. Crew scheduling optimization for urban rail transit system with crew resources sharing[D]. Beijing: School of Traffic and Transportationo,Beijing Jiaotong University, 2022.
71 Dauzère P S, Almeida D, Guyon O, et al. A lagrangian heuristic framework for a real-life integrated planning problem of railway transportation resources[J]. Transportation Research Part B: Methodological, 2015, 74: 138-150.
72 Huang S H, Yang T H, Wang R T. Ant colony optimization for railway driver crew scheduling: from modeling to implementation[J]. Journal of the Chinese Institute of Industrial Engineers, 2011, 28(6): 437-449.
73 Vaidyanathan B, Jha K C, Ahuja R K. Multicommodity network flow approach to the railroad crew-scheduling problem[J]. IBM Journal of Research and Development, 2007, 51(3): 325-344.
74 Fischetti M, Lodi A, Martello S, et al. A polyhedral approach to simplified crew scheduling and vehicle scheduling problems[J]. Management Science, 2001, 47(6): 833-850.
75 Suyabatmaz A Ç, Şahin G. Railway crew capacity planning problem with connectivity of schedules[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 84: 88-100.
76 Zhou F, Xu R H. Study on model and algorithm for urban rail transit crew scheduling system[C]∥International Conference On Computer Design and Applications, Qinhuangdao, China, 2010: 213-216.
77 袁仁杰. 基于遗传算法的地铁司乘排班计划管理研究[D]. 成都:西南交通大学交通运输与物流学院, 2018.
Yuan Ren-jie. Research on metro driver crew management planning based on genetic algorithm[D]. Chengdu: School of Transportation and Logistics,Southwest Jiaotong University, 2018.
78 李思. 基于生物节律的地铁乘务计划编制研究[D]. 北京:北京交通大学交通运输学院, 2019.
Li Si. Study on the subway crew planning based on the biological rhythm[D]. Beijing: School of Traffic and Transportation,Beijing Jiaotong University, 2019.
79 Lusby R M, Larsen J, Bull S. A survey on robustness in railway planning[J]. European Journal of Operational Research, 2018, 266(1): 1-15.
80 Cacchiani V, Caprara A, Galli L, et al. Railway rolling stock planning: robustness against large disruptions[J]. Transportation Science, 2012, 46(2): 217-232.
81 Zhou L, Yang X, Wang H, et al. A robust train timetable optimization approach for reducing the number of waiting passengers in metro systems[J]. Physica A: Statistical Mechanics and its Applications, 2020, 558: 124927.
82 Qu Y, Wang H, Wu J, et al. Robust optimization of train timetable and energy efficiency in urban rail transit: a two-stage approach[J]. Computers & Industrial Engineering, 2020, 146: 106594.
83 Jütte S, Müller D, Thonemann U W. Optimizing railway crew schedules with fairness preferences[J]. Journal of Scheduling, 2017, 20(1): 43-55.
84 Smith B M, Wren A. A bus crew scheduling system using a set covering formulation[J]. Transportation Research Part A: General, 1988, 22(2): 97-108.
85 Smith B M. Impacs-A bus crew scheduling system using integer programming[J]. Mathematical Programming, 1988, 42(1-3): 181-187.
86 Kwan R S K. Case studies of successful train crew scheduling optimisation[J]. Journal of Scheduling, 2011, 14(5): 423-434.
87 Lübbecke M E, Desrosiers J. Selected topics in column generation[J]. Operations Research, 2005, 53(6): 1007-1023.
88 Desrochers M, Soumis F. A column generation approach to the urban transit crew scheduling problem[J]. Transportation Science, 1989, 23(1): 1-13.
89 Lusby R, Dohn A, Range T M, et al. A column generation-based heuristic for rostering with work patterns[J]. Journal of the Operational Research Society, 2012, 63(2): 261-277.
90 Wren A, Wren D O. A genetic algorithm for public transport driver scheduling[J]. Computers & Operations Research, 1995, 22(1): 101-110.
91 Kwan R S K, Kwan A S K, Wren A. Evolutionary driver scheduling with relief chains[J]. Evolutionary Computation, 2001, 9(4): 445-460.
92 Hanafi R, Kozan E. A hybrid constructive heuristic and simulated annealing for railway crew scheduling[J]. Computers & Industrial Engineering, 2014, 70: 11-19.
93 Borndörfer R, Schulz C, Seidl S, et al. Integration of duty scheduling and rostering to increase driver satisfaction[J]. Public Transport, 2017, 9(1/2): 177-191.
94 王莹. 动车组运用计划和乘务计划的优化方法研究[D]. 北京: 北京交通大学交通运输学院, 2009.
Wang Ying. Study on the optimization of rolling stock planning and crew planning[D]. Beijing: School of Traffic and Transportation, Beijing Jiaotong University, 2009.
95 Bach L, Dollevoet T, Huisman D. Integrating timetabling and crew scheduling at a freight railway operator[J]. Transportation Science, 2016, 50(3): 878-891.
96 戚建国, 周厚盛, 杨立兴, 等. 灵活编组条件下轨道交通客货协同运输方案优化[J]. 交通运输系统工程与信息, 2022, 22(2): 197-205.
Qi Jian-guo, Zhou Hou-sheng, Yang Li-xing, et al. Optimization methods of combined passenger and freight transportation based on flexible train composition mode[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 197-205.
[1] 田佩宁,童瑞咏,王海鹏,毛保华,张皓翔,卢霞. 城市轨道交通跨环线的跨线列车开行方案优化[J]. 吉林大学学报(工学版), 2025, 55(1): 132-140.
[2] 张娜,陈峰,王剑坡,朱亚迪. 基于时空序列相似性的城轨乘客出行模式识别[J]. 吉林大学学报(工学版), 2024, 54(9): 2588-2599.
[3] 赖丹晖,罗伟峰,袁旭东,邱子良. 复杂环境下多模态手势关键点特征提取算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2288-2294.
[4] 赵靖华,杜世豪,刘靓葳,胡云峰,孙耀,解方喜. 基于改进混沌优化的选择性催化还原系统参数辨识方法[J]. 吉林大学学报(工学版), 2024, 54(2): 550-557.
[5] 范博松,邵春福. 城市轨道交通突发事件风险等级判别方法[J]. 吉林大学学报(工学版), 2024, 54(2): 427-435.
[6] 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600.
[7] 佘智勇,朱彤鸣,刘旺魁. 基于近端策略优化的高速无人飞行器上升段在线轨迹规划[J]. 吉林大学学报(工学版), 2023, 53(3): 863-870.
[8] 张惠臻,高正凯,李建强,王晨曦,潘玉彪,王成,王靖. 基于循环神经网络的城市轨道交通短时客流预测[J]. 吉林大学学报(工学版), 2023, 53(2): 430-438.
[9] 王菁,万峰,董春娇,邵春福. 城市轨道交通站点吸引范围及强度建模[J]. 吉林大学学报(工学版), 2023, 53(2): 439-447.
[10] 王清永,曲伟强. 基于线性规划的城市轨道交通运行调度优化算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3446-3451.
[11] 张铮,朱齐丹,吕晓龙,樊星. 冗余机械臂运动学逆解的求解优化方法[J]. 吉林大学学报(工学版), 2023, 53(12): 3379-3387.
[12] 白丽丽,姜封国,周玉明,曾枭. 基于改进鲸鱼算法的结构可靠性优化设计[J]. 吉林大学学报(工学版), 2023, 53(11): 3160-3165.
[13] 郭辉,付接递,李振东,严岩,李虓. 基于改进鲸鱼算法优化SVM参数和特征选择[J]. 吉林大学学报(工学版), 2023, 53(10): 2952-2963.
[14] 秦静,郑德,裴毅强,吕永,苏庆鹏,王膺博. 基于PSO-GPR的发动机性能与排放预测方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1489-1498.
[15] 盖松雪,曾小清,岳晓园,袁子豪. 基于用户-系统双层优化算法的车位引导模型[J]. 吉林大学学报(工学版), 2022, 52(6): 1344-1352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!