吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (6): 1344-1352.doi: 10.13229/j.cnki.jdxbgxb20210093

• 交通运输工程·土木工程 • 上一篇    

基于用户-系统双层优化算法的车位引导模型

盖松雪1,2(),曾小清1(),岳晓园1,袁子豪1   

  1. 1.同济大学 道路与交通工程教育部重点实验室,上海 201804
    2.上海市交通发展研究中心,上海 200030
  • 收稿日期:2021-01-25 出版日期:2022-06-01 发布日期:2022-06-02
  • 通讯作者: 曾小清 E-mail:gaisongxue@tongji.edu.cn;zengxq@tongji.edu.cn
  • 作者简介:盖松雪(1982-),女,博士研究生.研究方向:智能交通. E-mail: gaisongxue@tongji.edu.cn
  • 基金资助:
    上海市科学技术委员会科研计划项目(20DZ1202900)

Parking guidance model based on user and system bi⁃level optimization algorithm

Song-xue GAI1,2(),Xiao-qing ZENG1(),Xiao-yuan YUE1,Zi-hao YUAN1   

  1. 1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,Shanghai 201804,China
    2.Shanghai Transport Research Center,Shanghai 200030,China
  • Received:2021-01-25 Online:2022-06-01 Published:2022-06-02
  • Contact: Xiao-qing ZENG E-mail:gaisongxue@tongji.edu.cn;zengxq@tongji.edu.cn

摘要:

针对当前大型停车场的车位引导系统派位随机、控制策略不清晰、系统利用率低等技术难点,基于用户最优策略建立了用户最优模型,基于系统最优策略建立了系统最优模型,找寻出两种策略分别适应不同时段的特征规律,建立了新型双层优化模型。通过仿真实验验证了本文优化模型具有更好的流量适应性、更短的停车时长和最大的泊位周转率(6.53),本文研究成果可应用于交通枢纽大型停车场控制系统。

关键词: 交通运输系统工程, 车位引导, 双层优化模型, 最优化算法, 大型停车库

Abstract:

Aiming at the technical difficulties of random allocation, unclear control strategy and low utilization rate of current parking guidance system, the user optimization model is established on the basis of designing user optimal strategy, the system optimization model is established on the basis of designing system optimal strategy. The period characteristic rules of the user optimization model and the system optimization model are found out. On this basis, a new bi-level optimization model is established. Verified by simulation experiments, the bi-level optimization model is better than the single model in terms of flow adaptability, the former model gets the minimum parking duration and the maximum parking turnover rate (6.53). The research results of this paper can be applied to the parking control system of large parking lots of transportation hub.

Key words: engineering of communications and transportation system, parking guidance, bi-level optimization model, optimization algorithm, large-scale parking lot

中图分类号: 

  • U491.7

图1

单一模型建模流程图"

图2

双层优化模型建模流程图"

图3

Vissim背景图"

表1

停车场车流量输入表"

编号仿真时段/s

单一流量/

(veh·h-1

组合流量/

(veh·h-1

10~900Q*300
2900~1800Q*400
3

1800~2700

(高峰时段)

Q*800
42700~3600Q*200

图4

Vissim建模图"

表2

五种优化模型"

模型编号模型名称Zone停车位属性设置(Attraction)
全时段

阶段一

用户最优时段

阶段二

系统最优时段

1用户最优模型1100--
280--
360--
440--
2系统最优模型1100--
2100--
3100--
4100--
3

双层优化模型1

(高峰时段前5 min实施系统最优)

1-100每隔2 min,按空泊位总数从大到小,按比例动态设置。
2-80
3-60
4-40
4

双层优化模型2

(高峰时段前15 min实施系统最优)

1-100每隔2 min,按空泊位总数从大到小,按比例动态设置。
2-80
3-60
4-40
5

双层优化模型3

(高峰时段前20 min实施系统最优)

1-100每隔2 min,按空泊位总数从大到小,按比例动态设置。
2-80
3-60
4-40

图5

模型Vissim实验阶段对比"

图6

单一流量输入不同模型评价指标箱型图"

图7

组合流量输入不同模型评价指标箱型图"

1 Kotb A O, Shen Y C, Huang Y. Smart parking guidance, monitoring and reservations: a review[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(2): 6-16.
2 Ata K I, Azura C S, Ishak A J, et al. Smart indoor parking system based on Dijkstra's algorithm[J]. International Journal of Electrical Engineering and Applied Sciences, 2019, 2(1): 13-20.
3 张玉杰, 田硕. Dijkstra优化算法在停车场车位引导系统中的应用[J]. 计算机测量与控制, 2014, 22(1): 191-193.
Zhang Yu-jie, Tian Shuo. Dijkstra optimization algorithm used in parking lots guidance system[J]. Computer Measurement & Control, 2014, 22(1): 191-193.
4 王靖. 停车诱导系统中动态路径诱导技术的研究与应用[D]. 苏州: 苏州大学计算机科学与技术学院, 2008.
Wang Jing. Research and application of dynamic route guidance technology for PGS [D]. Suzhou: School of Computer Science and Technology, Soochow University, 2008.
5 许增昭, 许伦辉. Dijkstra改进算法在泊位诱导系统中的应用与仿真[J]. 科学技术与工程, 2009, 9(23): 7226-7229.
Xu Zeng-zhao, Xu Lun-hui. Application and simulation of developed dijkstra algorithm in the guidance of parking space[J]. Science Technology and Engineering, 2009, 9(23): 7226-7229.
6 王树西, 吴政学. 改进的Dijkstra最短路径算法及其应用研究[J]. 计算机科学, 2012, 39(5): 223-228.
Wang Shu-xi, Wu Zheng-xue. Improved Dijkstra shortest path algorithm and its application[J]. Computer Science, 2012, 39(5): 223-228.
7 杨嘉华. 基于双向最短路径的大型停车场停车路径优化算法[J]. 信息技术与信息化, 2016, 40(9): 58-60.
Yang Jia-hua. Parking path optimization algorithm of large parking lot based on bidirectional shortest path[J]. Information Technology and Informatization, 2016, 40(9): 58-60.
8 Yuan L, Huang R, Han L, et al. A parking guidance algorithm based on time-optimal dynamic sorting for underground parking[C]∥2018 26th International Conference on Geoinformatics, Kunming, China, 2018:1-6.
9 程丽平, 谭永海. 改进的分层A*算法在停车场路径寻优中的应用[J]. 计算机测量与控制, 2015, 23(1): 183-186.
Cheng Li-ping, Tan Yong-hai. Application of improved hierarchial A* algorithm for optimal parking path planning[J]. Computer Measurement and Control, 2015, 23(1): 183-186.
10 Cheng L, Liu C, Yan B. Improved hierarchical A-star algorithm for optimal parking path planning of the large parking lot[C]∥2014 IEEE International Conference on Information and Automation (ICIA), Hailar, China, 2014: 695-698.
11 陈群. 城市停车诱导系统设计的理论与方法研究[D]. 上海: 同济大学交通运输工程学院, 2006.
Chen Qun. Research on theory and method of urban parking guidance system design[D]. Shanghai: College of Transportation Engineering, Tongji University, 2006.
12 董洁雯. 粒子群算法在大型停车场车位诱导中的研究与应用[D]. 长春: 吉林大学计算机科学与技术学院, 2013.
Dong Jie-wen. Research and application of particle swarm optimization algorithm using in parking space inducing on large parking lot[D]. Changchun: College of Computer Science and Technology, Jilin University, 2013.
13 An S, Han B, Wang J. Study of the mode of real-time and dynamic parking guidance and information systems based on fuzzy clustering analysis[C]∥Proceeding of 3rd International Conference on Machine Learning & Cybernetics, Shanghai, China, 2004: 2790-2794.
14 季彦婕, 王炜, 邓卫. 停车场内部泊车行为特性分析及最优泊位选择模型[J]. 南京: 东南大学学报: 自然科学版, 2009, 39(2):399-403.
Ji Yan-jie, Wang Wei, Deng Wei. Micro-level parking behaviors within parking facilities and optimal parking space choice model[J]. Nanjing: Journal of Southeast University(Natural Science Edition), 2009, 39(2): 399-403.
15 Geng Y, Cassandras C G. New "smart parking" system based on resource allocation and reservations[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1129-1139.
16 Mouskos K C, Tvantzis J, Bernstein D, et al. Mathematical formulation of a deterministic parking reservation system (PRS) with fixed costs[C]∥2000 10th Mediterranean Electrotechnical Conference, Lemesos, Cyprus, 2000: 648-651.
17 Yang Jun, Li Xing-yi, Liu Shi-hao. A reservation strategy model of finite berth based on active parking guidance and information system[C]∥2009 International Workshop on Intelligent Systems and Applications (ISA 2009), Wuhan, China, 2009:1-4.
18 Kotb A O, Shen Y C, Zhu X, et al. iParker—a new smart car-parking system based on dynamic resource allocation and pricing[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9): 2637-2647.
19 宗芳, 张屹山, 王占中, 等. 城市中心商业区停车收费分析[J]. 吉林大学学报:工学版, 2013, 43(5): 1235-1240.
Zong Fang, Zhang Yi-shan, Wang Zhan-zhong, et al. Parking pricing analysis in urban central business district[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(5): 1235-1240.
20 PTV. Vissim 10 user manual[Z]. German: Planung Transport Verkeher AG, 2017.
[1] 吴文静,战勇斌,杨丽丽,陈润超. 考虑安全间距的合流区可变限速协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(6): 1315-1323.
[2] 徐洪峰,陈虹瑾,张栋,陆千惠,安娜,耿现彩. 面向网联汽车环境的单点全感应式信号配时技术[J]. 吉林大学学报(工学版), 2022, 52(6): 1324-1336.
[3] 尹超英,邵春福,黄兆国,王晓全,王晟由. 基于梯度提升决策树的多尺度建成环境对小汽车拥有的影响[J]. 吉林大学学报(工学版), 2022, 52(3): 572-577.
[4] 贾洪飞,邵子函,杨丽丽. 终点不确定条件下网约车合乘匹配模型及算法[J]. 吉林大学学报(工学版), 2022, 52(3): 564-571.
[5] 冯天军,孙学路,黄家盛,田秀娟,宋现敏. 基于三种过街方式的两相位信号交叉口延误[J]. 吉林大学学报(工学版), 2022, 52(3): 550-556.
[6] 李兴华,冯飞宇,成诚,王洧,唐鹏程. 网约拼车服务选择偏好分析及建模[J]. 吉林大学学报(工学版), 2022, 52(3): 578-584.
[7] 李先通,全威,王华,孙鹏程,安鹏进,满永兴. 基于时空特征深度学习模型的路径行程时间预测[J]. 吉林大学学报(工学版), 2022, 52(3): 557-563.
[8] 薛锋,何传磊,黄倩,罗建. 多式轨道交通网络的耦合协调度[J]. 吉林大学学报(工学版), 2021, 51(6): 2040-2050.
[9] 贾彦峰,曲大义,林璐,姚荣涵,马晓龙. 基于运行轨迹的网联混合车流速度协调控制[J]. 吉林大学学报(工学版), 2021, 51(6): 2051-2060.
[10] 陆文琦,周天,谷远利,芮一康,冉斌. 基于张量分解理论的车道级交通流数据修复算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1708-1715.
[11] 卢凯,吴蔚,林观荣,田鑫,徐建闽. 基于KNN回归的客运枢纽聚集人数组合预测方法[J]. 吉林大学学报(工学版), 2021, 51(4): 1241-1250.
[12] 彭博,张媛媛,王玉婷,唐聚,谢济铭. 基于自动编码机-分类器的视频交通状态自动识别[J]. 吉林大学学报(工学版), 2021, 51(3): 886-892.
[13] 张健,吴坤润,杨敏,冉斌. 智能网联环境下交叉口双环自适应控制模型[J]. 吉林大学学报(工学版), 2021, 51(2): 541-548.
[14] 王殿海,沈辛夷,罗小芹,金盛. 车均延误最小情况下的相位差优化方法[J]. 吉林大学学报(工学版), 2021, 51(2): 511-523.
[15] 宋现敏,张明业,李振建,王鑫,张亚南. 动态公交专用道的设置及其仿真分析评价[J]. 吉林大学学报(工学版), 2020, 50(5): 1677-1686.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!