吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (3): 938-946.doi: 10.13229/j.cnki.jdxbgxb.20230553

• 交通运输工程·土木工程 • 上一篇    下一篇

基于Faster-RCNN改进的交通标志检测算法

李学军1(),权林霏1,刘冬梅1(),于树友2   

  1. 1.长春大学 电子信息工程学院,长春 130012
    2.吉林大学 控制科学与工程系,长春 130012
  • 收稿日期:2023-06-01 出版日期:2025-03-01 发布日期:2025-05-20
  • 通讯作者: 刘冬梅 E-mail:lixj@ccu.edu.cn;liudm@ccu.edu.cn
  • 作者简介:李学军(1968-),女,教授,博士.研究方向:交通信息检测与车辆控制.E-mail:lixj@ccu.edu.cn
  • 基金资助:
    国家自然科学基金联合基金项目(U1964202);吉林省教育厅科学技术研究项目(JJKH20220592KJ);吉林省自然科学基金项目(YDZJ202101ZYTS169)

Improved Faster⁃RCNN algorithm for traffic sign detection

Xue-jun LI1(),Lin-fei QUAN1,Dong-mei LIU1(),Shu-you YU2   

  1. 1.College of Electronic & Information Engineering,Changchun University,Changchun 130012,China
    2.Department of Control Science & Engineering,Jilin University,Changchun 130012,China
  • Received:2023-06-01 Online:2025-03-01 Published:2025-05-20
  • Contact: Dong-mei LIU E-mail:lixj@ccu.edu.cn;liudm@ccu.edu.cn

摘要:

针对真实交通场景下受天气、光线条件的影响较大,远距离小目标交通标志识别效果不佳、计算成本高等问题,以Faster-RCNN的基本架构为基础,提出了一种Faster-RCNN改进算法用于小目标交通标志检测。通过重构骨干网络和改进区域候选网络,使网络框架轻量化。融合scSE注意力和GSConv卷积设计了多尺度特征融合网络,同时更新Anchors锚选框尺寸,提高网络对交通标志目标的定位能力和识别能力。采用对每个目标子区域进行双线性插值的ROI Align池化操作保留目标区域细节特征,提高远距离目标的细节拾取能力;采用平衡L1损失函数解决大梯度难学样本与小梯度易学样本间的不平衡问题,提高训练效果。使用扩充后的TT100K数据集进行测试,实验结果表明:本文算法与传统Faster-RCNN相比,模型权重减少了200 MB,检测精度提高了21.3%。在阴天等低强度环境中交通标志检测精度可以达到85%,有助于提高极端环境下的交通标志检测性能。

关键词: 环境感知, 交通标志检测, TT100K, Faster-RCNN, 多尺度特征融合

Abstract:

An improved Faster-RCNN algorithm for detecting small traffic signs was proposed, which addresses the issues of poor recognition performance of distant small targets and high computation cost in real-world traffic scenes affected by weather and lighting conditions. Based on the basic architecture of Faster-RCNN, the algorithm reconstructs the backbone network and improves the region proposal network to make the network framework lightweight. A multi-scale feature fusion network is designed by integrating the scSE attention and GSConv modules, and the Anchors box size was updated to improve the localization and recognition of traffic sign targets. The ROI Align pooling operation with bilinear interpolation for each target subregion was used to preserve the detailed features of the target region and improve the ability to capture details of distant targets. The balanced L1 loss function was adopted to address the problem of imbalance between samples with large gradient difficulty and those with small gradient easiness, thus improving the training effect. Experiments were conducted on the expanded TT100K dataset. Results show that compared with traditional Faster-RCNN, the model weight is reduced by 200 MB, and detection accuracy is improved by 21.3%. The algorithm achieves a detection accuracy of 85% in low-intensity environments such as cloudy days, which helps improve the traffic sign detection performance in extreme environments.

Key words: environmental awareness, traffic sign detection, TT100K, Faster-RCNN, multi-scale feature fusion

中图分类号: 

  • TP391

图1

改进前后模型框架对比图"

图2

倒残差结构"

图3

GA-FPN网络结构"

图4

锚选框类型的具体参数"

图5

改进前后的工作机理框图对比"

图6

TT100K数据集中所选45类标志"

表1

实验采用数据集"

类别名称训练数量测试数量
禁止5 6841 768
警告5 1321 312
指示4 8681 120

表2

COCO评价指标及其意义"

评价指标意义评价指标意义
APIoU=0.5:0.95时的AP值AP50

IoU=0.5时的

AP值

AP75IoU=0.75时的AP值APS小目标的AP值
APM

中等目标的

AP值

APL大目标的AP值

表3

注意力嵌入位置消融实验"

数据

FPNRPNROIhead

mAP

/%

AR

/%

模型权重/MB

TT-

1000K

73.979.8142
75.280.3137
82.483.6137
83.985141

表4

网络改进消融实验结果"

模型Mobilenet V2FPNGA-FPN锚选框尺寸更新损失函数优化mAP/%AR/%模型权重/MB
A70.576.6337
B70.675.7239
C73.979.8142
D75.280.3137
E89.587.7136.5
F91.890.8136.5

图7

部分样本检测结果对比图"

图8

网络训练损失曲线"

表5

6种网络模型的训练结果对比"

网络模型AP50AP75APSAPMAPmAPFPS模型权重Weight size/MB
SSD30051.647.831.643.341.151.658.8142
Mask-RCNN59.851.248.645.643.559.83.5335
Faster-RCNN70.567.450.962.958.670.58.5337
YOLOV3-tiny72.169.153.661.260.172.129.533.6
YOLOv576.972.656.866.363.276.963.714.6
改进后KB-Faster-RCNN91.885.459.679.872.591.816.7136.5
1 Cai Y, Luan T, Gao H, et al. YOLOv4-5D: an effective and efficient object detector for autonomous driving[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13.
2 Wang H, Chen Z, Cai Y, et al. Voxel-RCNN-complex: an effective 3-D point cloud object detector for complex traffic conditions[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.
3 Wang H, Chen Y, Cai Y, et al. SFNet-N: an improved SFNet algorithm for semantic segmentation of low-light autonomous driving road scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21405-21417.
4 Chen G, Chen K, Zhang L, et al. VCANet: vanishing-point-guided context-aware network for small road object detection[J]. Automotive Innovation, 2021, 4: 400-412.
5 孟繁星, 于瓅. 基于YOLOv5-EA的交通标志识别[J]. 辽宁工业大学学报: 自然科学版, 2022, 42(5): 303-310.
Meng Fan-xing, Yu Li. Traffic sign recognition based on YOLOv5-EA[J].Journal of Liaoning Institute of Technology(Natural Science Edition), 2022, 42(5): 303-310.
6 田智慧, 孙盐盐, 魏海涛. 基于SSD模型的交通标志检测算法[J]. 计算机应用与软件, 2021, 38(12): 201-206.
Tian Zhi-hui, Sun Yan-yan, Wei Hai-tao. Traffic sign detection algorithm based on ssd model[J]. Computer Applications and Software,2021, 38(12): 201-206.
7 Ayachi R, Afif M, Said Y, et al. Traffic signs detection for real-world application of an advanced driving assisting system using deep learning[J]. Neural Processing Letters, 2020, 51: 837-851.
8 Zhang J, Hui L, Lu J, et al. Attention-based neural network for traffic sign detection[C]∥24th International Conference on Pattern Recognition (ICPR),Beijing,China, 2018: 1839-1844.
9 Fan B B, Yang H. Multi-scale traffic sign detection model with attention[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(2/3): 708-720.
10 Cao J, Zhang J, Jin X. A traffic-sign detection algorithm based on improved sparse R-CNN[J]. IEEE Access, 2021, 9: 122774-122788.
11 Zhu Z, Liang D, Zhang S, et al. Traffic-sign detection and classification in the wild[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas, USA,2016: 2110-2118.
12 Li H L, Li J, Wei H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J/OL].[2023-05-15].
13 蒋镕圻, 彭月平, 谢文宣, 等. 嵌入scSE模块的改进YOLOv4小目标检测算法[J]. 图学学报, 2021, 42(4): 546-555.
Jiang Rong-qi, Peng Yue-ping, Xie Wen-xuan, et al.Improved YOLOv4 small target detection algorithm with embedded scSE module[J]. Journal of Graphics,2021, 42(4): 546-555.
14 He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy,2017: 2961-2969.
[1] 徐慧智,蒋时森,王秀青,陈爽. 基于深度学习的车载图像车辆目标检测和测距[J]. 吉林大学学报(工学版), 2025, 55(1): 185-197.
[2] 王宏志,宋明轩,程超,解东旋. 基于改进YOLOv5算法的道路目标检测方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2658-2667.
[3] 陶博,颜伏伍,尹智帅,武冬梅. 基于高精度地图增强的三维目标检测算法[J]. 吉林大学学报(工学版), 2023, 53(3): 802-809.
[4] 潘晓英,魏德,赵逸喆. 基于Mask R⁃CNN和上下文卷积神经网络的肺结节检测[J]. 吉林大学学报(工学版), 2022, 52(10): 2419-2427.
[5] 金立生,郭柏苍,王芳荣,石健. 基于改进YOLOv3的车辆前方动态多目标检测算法[J]. 吉林大学学报(工学版), 2021, 51(4): 1427-1436.
[6] 李厚杰,王法胜,贺建军,周瑜,李威,窦宇轩. 基于伪样本正则化Faster R⁃CNN的交通标志检测[J]. 吉林大学学报(工学版), 2021, 51(4): 1251-1260.
[7] 于向军,槐元辉,姚宗伟,孙中朝,俞安. 工程车辆无人驾驶关键技术[J]. 吉林大学学报(工学版), 2021, 51(4): 1153-1168.
[8] 王方石, 王坚, 李兵, 王博. 基于深度属性学习的交通标志检测[J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[9] 王新竹, 李骏, 李红建, 尚秉旭. 基于三维激光雷达和深度图像的自动驾驶汽车障碍物检测方法[J]. 吉林大学学报(工学版), 2016, 46(2): 360-365.
[10] 王荣本;李琳辉;郭烈;金立生;张明恒 . 基于立体视觉的越野环境感知技术[J]. 吉林大学学报(工学版), 2008, 38(03): 520-0524.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹宁博,赵利英,曲昭伟,陈永恒,白乔文,邓晓磊. 考虑双向行人跟随行为的社会力模型[J]. 吉林大学学报(工学版), 2019, 49(3): 688 -694 .
[2] 王露,刘玉雯,陈红. 侧风下峡谷桥隧连接段汽车的行驶特性[J]. 吉林大学学报(工学版), 2019, 49(3): 736 -748 .
[3] 罗小芹,王殿海,金盛. 面向混合交通的感应式交通信号控制方法[J]. 吉林大学学报(工学版), 2019, 49(3): 695 -704 .
[4] 凃强,程琳,林芬,孙超. 考虑出行者风险态度的最优路径搜索[J]. 吉林大学学报(工学版), 2019, 49(3): 720 -726 .
[5] 陈鑫, 胡翠松, 宁厚于, 吴元强, 汪硕, 杨昌海. SUV白车身隐式参数化建模及多性能优化轻量化[J]. 吉林大学学报(工学版), 2016, 46(6): 1780 -1785 .
[6] 赵昱,霍亚飞. 强电磁脉冲下车辆线束快速等效方法[J]. 吉林大学学报(工学版), 2019, 49(3): 1009 -1016 .
[7] 赖晴鹰,刘军,赵若愚,骆泳吉,孟令云,徐亚之. 基于变间距动态规划的中高速磁悬浮列车 速度曲线优化[J]. 吉林大学学报(工学版), 2019, 49(3): 749 -756 .
[8] 张磊,刘保国,储昭飞. 深厚孔隙砂岩含水层疏干排水对盾构斜井的 影响模型试验[J]. 吉林大学学报(工学版), 2019, 49(3): 788 -797 .
[9] 祖象欢,杨传雷,王贺春,王银燕. 船用柴油机废气再循环性能评估及应用[J]. 吉林大学学报(工学版), 2019, 49(3): 805 -815 .
[10] 王富玉,沙庆林,张勇,戴文亭 . VCADRF和VCAAC矿料级配检验方法在SAC13级配设计中的应用[J]. 吉林大学学报(工学版), 2007, 37(03): 538 -0543 .