吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (02): 310-316.

• 论文 • 上一篇    下一篇

更新步长和元胞尺寸对元胞自动机模型的影响

敬明, 邓卫, 季彦婕, 王昊   

  1. 东南大学 交通学院, 南京 210096
  • 收稿日期:2012-02-16 出版日期:2013-03-01 发布日期:2013-03-01
  • 通讯作者: 邓卫(1966-),男,教授,博士生导师.研究方向:交通运输规划与管理.E-mail:dengwei@seu.edu.cn E-mail:dengwei@seu.edu.cn
  • 作者简介:敬明(1986-),男,博士研究生.研究方向:交通运输规划与管理.E-mail:410406341@qq.com
  • 基金资助:

    国家自然科学基金项目(51008074,50908051);高等学校博士学科点专项科研基金项目(20090092120047).

Influences of time step and cell size on cellular automaton model

JING Ming, DENG Wei, JI Yan-jie, WANG Hao   

  1. School of Transportation, Southeast University, Nanjing 210096, China
  • Received:2012-02-16 Online:2013-03-01 Published:2013-03-01

摘要: 改进了NaSch模型的更新规则,将更新步长和元胞尺寸作为模型的输入值,建立了细化NS模型。通过计算机模拟研究了更新步长和元胞尺寸对路段交通流状态演变的影响及其作用机理。研究结果表明:较小的更新步长可以真实地体现车辆的相对运动,减少确定性减速;较小的元胞尺寸能够精确描述车辆的速度和位置变化,减少位移累加更新导致的"迟滞"效应。细化模型模拟的交通流具有较小的局部阻塞宽度和速度离散度,因而具有更好的系统稳定性,其模拟结果与实测数据符合很好,解决了经典NS模型仿真流量偏小的问题。

关键词: 交通运输系统工程, 元胞自动机, NaSch模型, 更新步长, 元胞尺寸, 速度离散度

Abstract: By improving updating rules of NaSch model and adopting time step and cell size as input values of the model, a refined NS model was established and used to study the influence of time step and cell size on road traffic flow evolution and their action mechanisms. Simulation showed that smaller time step can truly reflect the relative motion of vehicles and reduce deterministic deceleration while smaller cell size can accurately describe the change of vehicle velocity and location and reduce "delay" effect caused by cumulative update of travel distance. Simulation results of traffic flow using the refined model have less jam width and speed dispersion, which suggests better system stability. The simulated traffic flow and measured data were in good agreement, which solved the problem that simulated traffic flow of classic NS model is lower than the actual flow.

Key words: engineering of communications and transportation system, cellular automaton, NaSch model, time step, cell size, speed dispersion

中图分类号: 

  • U491
[1] Cremer M, Ludwig J.A fast simulation model for traffic flow on the basis of Boolean operations[J].Math Comp Simul,1986,28: 297-303.

[2] Fukui M,Ishibashi Y. Traffic flow in 1D cellular automaton model including cars moving with high speed[J].Phys Soc Japan,1996,65(6):1868-1870.

[3] Barlovic R, Santen L, Schreckenburg A. Metastable states in cellular automata for traffic flow s[J]. Eur Phy B,1998,5: 793-800.

[4] Benjamin S C,Johnson N F, Hui P M.Cellular automaton models of traffic flow along a highway containing a junction[J].Physica A, 1996,29:3119-3127.

[5] Knopse W, Santen L, Schadschneider A. Toward a realistic microscopic description of highway traffic[J]. Phys A, 2000,33: L477-L485.

[6] Nishinari K,Takahashi D.Analytical properties of ultradiscrete Burgers equation and role-184 cellular automaton[J].Phys A,1998,31:5439-5450.

[7] Wagner P.Traffic simulations using cellular automata:comparison with reality//Proceedings of Workshop in Traffic and Granular Flow, Singapore:World Scientific,1995:199-203.

[8] 雷丽,薛郁,戴世强.交通流的一维元胞自动机敏感驾驶模型[J].物理学报,2003,52(9):2121-2126. Lei Li, Xue Yu, Dai Shi-qiang. One-dimensional sensitive driving cellular automaton model for traffic flow[J]. Acta Phys Sin,2003,52(9):2121-2126.

[9] 薛郁,董力耘,戴世强. 一种改进的一维元胞自动机交通流模型及减速概率的影响[J].物理学报,2001,50(3):445-449. Xue Yu, Dong Li-yun, Dai Shi-qiang. Model of traffic flow and the effect of deceleration probability[J]. Acta Phys Sin,2001,50(3):445-449.

[10] 董力耘,薛郁,戴世强.基于跟车思想的一维元胞自动机交通流模型[J].应用数学和力学,2004, 23(4):331-337. Dong Li-yun, Xue Yu, Dai Shi-qiang. One-dimensional cellular automaton model of traffic flow based on car-following idea[J].Applied Mathematics and Mechanics, 2004, 23(4):331-337.

[11] 刘泓,王慧,张晋,等.基于一维元胞自动机的双跟驰模型//第26届中国控制工程会议,张家界,2007:62-65. Liu Hong,Wang Hui, Zhang Jin,et al. Two-car following model based on one-dimension cellular automaton//Proceedings of the 26th Chinese Control Conference,Zhangjiajie,2007:62-65.

[12] 黄雪峰,董力耘. 加速过程慢启动的细化敏感驾驶交通流模型[J].上海大学学报,2008,14(3):276-280. Huang Xue-feng, Dong Li-yun. Refined sensitive driving traffic flow model with slow-to-start during acceleration[J].Journal of Shanghai University, 2008,14(3):276-280.

[13] 王昊,王炜,陆建,等.基于跟驰理论的车速离散度定义及特性[J].东南大学学报:自然科学版,2009,39(1):161-165. Wang Hao, Wang Wei, Lu Jian, et al. Car-following theory based speed dispersion definition and related properties[J].Journal of Southeast University(Natural Science Edition), 2009,39(1):161-165.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[14] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[15] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!