吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 1225-1232.doi: 10.7964/jdxbgxb201405001

• 论文 •    下一篇

混合动力客车能量管理设计及硬件在环试验验证

王俊, 王庆年, 曾小华, 王鹏宇   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2013-06-08 出版日期:2014-09-01 发布日期:2014-09-01
  • 通讯作者: 曾小华(1977) ,男,副教授,硕士生导师.研究方向:混合动力汽车关键技术.E-mail:zeng.xiaohua@126.com
  • 作者简介:王俊(1985) , 男, 博士研究生.研究方向:混合动力汽车关键技术.E-mail:wangjun9161029@163.com
  • 基金资助:

    “863”国家高技术研究发展计划项目(2011AA11A210).

Energy management design of hybrid buses and hardware verification in loop test

WANG Jun,WANG Qing-nian,ZENG Xiao-hua,WANG Peng-yu   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University,Changchun 130022,China
  • Received:2013-06-08 Online:2014-09-01 Published:2014-09-01

摘要:

构建了混合动力客车的仿真模型,利用Cruise的实时仿真模块下载车辆模型至dSAPCE/Simulator作为整车的底层仿真平台。构建了基于stateflow的多模式整车能量管理控制策略,通过算法优化得到各模式最佳工作区域,从而确定多模式之间切换规则;利用自动代码生成技术生成代码并将其下载至TTC200控制器中,进行TTC200控制器与Simulator实时的硬件在环试验。试验结果与离线的仿真结果对比表明:整车控制策略的实时性较好,CAN总线通讯良好,减少了后续的实车调试周期。

关键词: 车辆工程, 仿真平台, 能量管理, 硬件在环

Abstract:

A simulation model of electric hybrid buses was proposed, which is downloaded into the DSAPCE/Simulator using the Cruise real-time simulation modules as the simulation platform of the underlying vehicle model. Energy management control strategy based on the stateflow multi-mode operation control algorithm was established. The optimized algorithm was used to acquire high efficiency working areas as the control rules among the different modes, which were downloaded into TTC200 controller through automatic code generation technique. Then real-time loop test was carried out between TTC200 controller and Simulator hardware platform. The results show that, compared with offline simulation, the vehicle control strategy has good performance in real-time control and CAN bus communication works well, which reduces the subsequent vehicle debug cycle.

Key words: vehicle engineering, simulation platform, energy management, hardware in the loop

中图分类号: 

  • U469.7
[1] Paganelli G, Delprat S. Equivalent consumption minimization strategy for parallel hybrid powertrains[C]∥IEEE 55th Vehicular Technology Conference, Birmingham, England, 2002.
[2] 王庆年, 郑君峰, 王伟华. 一种新的并联混合动力客车的自适应控制策略[J]. 吉林大学学报:工学版, 2008,38(2):249-253.Wang Qing-nian, Zheng Jun-feng, Wang Wei-hua. New adaptive control strategy of parallel hybrid electric bus[J]. Journal of Jilin University (Engineering and Technology Edition), 2008,38(2): 249-253.
[3] 黄援军, 殷承良, 张建武. 并联式混合动力城市客车最优转矩分配策略[J]. 上海交通大学学报,2009,43(10):1536-1540.Huang Yuan-jun, Yin Cheng-liang, Zhang Jian-wu. Optimal torque distribution control strategy for parallel hybrid electric urban buses[J]. Journal of Shanghai Jiaotong University,2009,43(10):1536-1540.
[4] Xiong We-wei, Wu Zhi-wei, Yin Cheng-liang, et al. Economical comparison of three hybrid electric car solutions[C]∥Proceedings of IEEE Vehicle Power and Propulsion Conference, Harbin,China, 2008.
[5] Xiong Wei-wei, Zhang Yong, Yin Cheng-liang. Optimal energy management for a series-parallel hybrid electric bus[J]. Energy Conversion and Management, 2009, 50(7):1730-1738.
[6] 刘志茹, 王庆年, 王光平. 混合动力汽车换档主动控制技术[J].吉林大学学报:工学版, 2006,36(2):153-156.Liu Zhi-ru, Wang Qing-nian, Wang Guang-ping. Active control during shifting in hybrid electric vehicle[J].Journal of Jilin University(Engineering and Technology Edition), 2006,36(2):153-156.
[7] Weinert J, Ogden J, Sperling D, et al. The future of electric two-wheelers and electric vehicles in China[J].Energy Policy, 2008, 36: 2544-2555.
[8] Ehsani M, Gao Y, Miller J M. Hybrid electric vehicles: architecture and motor drives[J].Proceedings of the IEEE, 2007,95(4):719-728.
[9] 舒红, 刘文杰, 袁景敏,等.混联型混合动力汽车能量管理策略优化[J].农业机械学报,2009,40(3):31-35.Shu Hong, Liu Wen-jie, Yuan Jing-min,et al. Optimization of energy management strategy for a parallel series HEV[J].Transactions of the Chinese Society for Agricultural Machinery, 2009,40(3):31-35.
[10] Jeong Yu-seok. Modeling and simulation of electric drive system for series hybrid electric vehicle[C]∥2009 International Telecommunications Energy Conference, Incheon, South Korea,2009.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!