吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1395-1401.doi: 10.13229/j.cnki.jdxbgxb201505003

• • 上一篇    下一篇

基于智能空间-车框架理论的车辆行驶运动学状态的预测

唐晓峰, 高峰, 徐国艳, 丁能根, 蔡尧, 刘建行   

  1. 北京航空航天大学 交通科学与工程学院,北京 100191
  • 收稿日期:2013-12-28 出版日期:2015-09-01 发布日期:2015-09-01
  • 通讯作者: 高峰(1955-),男,教授.研究方向:智能车辆和非常规行走机构.E-mail:gaof@buaa.edu.cn
  • 作者简介:唐晓峰(1980-),男,博士研究生.研究方向:智能车辆.E-mail:tangjianhong@dae.buaa.edu.cn
  • 基金资助:
    北京市自然科学基金项目(3133040); 中国博士后科学基金项目(124609); 国家青年科学基金项目(51105021)

Vehicle driving dynamics prediction based on highway intelligent space-vehicle framework theory

TANG Xiao-feng, GAO Feng, XU Guo-yan, DING Neng-gen, CAI Yao, LIU Jian-xing   

  1. School of Transportation Science and Engineering, Beihang University, Beijing 100191,China
  • Received:2013-12-28 Online:2015-09-01 Published:2015-09-01

摘要: 提出了高速公路智能空间(HIS)-车框架理论,研究了车辆经过高速公路隧道时的行驶状态。首先建立车辆纵向、横向动力学模型,并基于车辆道路行驶的特点,分别研究车辆纵向、横向的行驶状态,并运用模型预测控制方法对车间距、横向偏移等状态预测,结合预测控制算法的特点设置变量条件,最后采用MATLAB/CarSim进行联合仿真。仿真结果表明:采用高速公路智能空间(HIS)-车框架理论可以完成当某车前方道路发生交通事故时预测出车辆距离以及该车的侧向偏移等数据,以保证车辆安全行驶。

关键词: 车辆工程, 智能空间-车框架理论, 车辆行驶状态, 模型预测控制

Abstract: Highway Intelligent Space-Vehicle Framework Theory (HIS-VFT) is proposed to research vehicle driving state when passing highway tunnel. First, the longitudinal and lateral dynamics models are built based on the road driving characteristics to study the longitudinal and lateral driving states. Then, model predictive control method is used to predict relative vehicle distance and lateral deviation. Combined with prediction control characteristic, the variable conditions are set. Finally, MATLAB/CarSim is used to simulate the process. The simulation results show that using HIS-VFT can achieve vehicle safety driving when the traffic accident happens on the road ahead.

Key words: vehicle engineering, highway intelligent space-vehicle framework theory, vehicle driving state, model predictive control

中图分类号: 

  • U491
[1] Gao Feng, Liu Jian-xing, Xu Guo-yan, et al. Vehicle state detection in highway intelligent space based on information fusion[C]∥CICTP 2012, Beijing,2012:2307-2318.
[2] Mawhinney J R. Fixed fire protection systems in tunnels: issues and directions[J]. Fire Technology, 2013,49(2):477-508.
[3] Chen Tung-Tsan, Hsu Yao T. The research on the operating performance assessment for the automatic incident detection system of the highway tunnel-as an example of Ba-Guah mountain tunnel in Taiwan[C]∥GeoHunan International Conference 2011,Hunan,2011:40-47.
[4] Yan Bin, Chen Hong, Wang Lu. Visual characteristics of the driver to the tunnel group traffic safety[C]∥ASCE2011,Chengdu,China,2011:3009-3014.
[5] Shakouri Payman, Ordys Andrzej, Askari Mohamad R. Adaptive cruise control with stop &go function using the state-dependent nonlinear model predictive control approach[J]. ISA Transactions, 2012,51(5):622-631.
[6] Kim S G, Tomizuka M, Cheng K H. Smooth motion control of the adaptive cruise control system by a viertual lead vehicle[J]. International Journal of Automotive Technology, 2012,13(1):77-85.
[7] Peng Ya-fu. Adaptive intelligent back stepping longitudinal control of vehicle platoons using output recurrent cerebellar model articulation controller[J]. Expert Systems with Applications,2010,37(3):2016-2027.
[8] Nehaoua Lamri, Nouvelière Lydie. Backstepping based approach for the combined longitudinal-lateral vehicle control[C]∥2012 Intelligent Vehicles Symposium Alcalá de Henares, Spain, 2012:395-400.
[9] Li Shengbo, Li Keqiang, Rajamani Rajesh,et al. Model predictive multi-objective vehicular adaptive cruise control[J]. IEEE Transactions on Control Systems Technology, 2011,19(3):556-566.
[10] Naus G J L, Ploeg J, Van de Molengraft M J G, et al. Design and implementation of parameterized adaptive cruise control: an explicit model predictive control approach[J]. Control Engineering Practice,2010,18(8):882-892.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!