吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 696-702.doi: 10.13229/j.cnki.jdxbgxb201503003

• • 上一篇    下一篇

电动汽车复合制动预测模型

郭洪强, 何洪文, 卢兵   

  1. 北京理工大学 电动车辆国家工程实验室,北京100081
  • 收稿日期:2013-10-09 出版日期:2015-05-01 发布日期:2015-05-01
  • 作者简介:郭洪强(1980-),男,博士研究生.研究方向:电动汽车行驶稳定性.
  • 基金资助:
    “863”国家高技术研究发展计划项目(2011AA11A290,2012AA111603)

Predictive model for cooperative braking system of electric vehicles

GUO Hong-qiang, HE Hong-wen, LU Bing   

  1. National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
  • Received:2013-10-09 Online:2015-05-01 Published:2015-05-01

摘要: 基于提出的制动强度二次再分数学模型,系统研究了并联复合制动系统预测模型的设计方法。设计了离线优化流程:对由车速v、电池SoC及制动强度z构成的连续设计空间进行试验设计(Design of experiments,DOE)。基于DOE采样点,采用协同优化设计方法(CO),通过定义再生制动能量回收和制动稳定性两个子系统,得到离线优化数据,进而建立了制动力分配预测模型。基于预测模型的仿真验证表明:预测模型可实现实时最优控制,可在保证制动稳定性的前提下,最大化回收再生制动能量,具有较大的工程应用价值。

关键词: 车辆工程, 复合制动, 协同优化, 预测模型

Abstract: Based the quadratic subdivision mathematical model of the braking severity, a design method of the predictive model for parallel cooperative braking system is investigated systematically. An off-line optimization stream is designed. First, the continuous design space, which is constituted of the vehicle speed v, battery State-of-Charge (SoC) and braking severity z, is sampled by Design of Experiments(DOE);two subsystems of regenerative braking energy and braking stability are defined and optimized by collaborative optimization method(CO) based on the sampling points; finally, the predictive model is established for the cooperative braking system. Simulation results show that the proposed model can realize real-time optimum control and maximize the regenerative braking energy recovery efficiency under the condition of ensuring the braking stability. Accordingly, it has high engineering application value.

Key words: vehicle engineering, cooperative braking, collaborative optimization, predictive model

中图分类号: 

  • U463.51
[1] 王昕, 姜继海. 轮边驱动液压混合动力车辆再生制动控制策略[J]. 吉林大学学报:工学版, 2009, 39(6): 1544-1549.
Wang Xin, Jiang Ji-hai. Regenerative braking control strategy for wheel drive hydraulic hybrid vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(6): 1544-1549.
[2] 仇斌, 陈全世, 张开斌. 北京市区电动轻型客车制动能量回收潜力[J]. 机械工程学报,2005,41(12):87-91.
Qiu Bin, Chen Quan-shi, Zhang Kai-bin. Braking energy recycle of light electric bus of Beijing town[J]. Chinese Journal of Mechanical Engineering,2005,41(12):87-91.
[3] 张俊智,薛俊亮,陆欣,等. 混合动力城市客车串联式制动能量回馈技术[J]. 机械工程学报,2009,45(6):102-106.
Zhang Jun-zhi, Xue Jun-liang, Lu Xin, et al. Series braking energy recycle technology of hybrid electric city bus[J]. Chinese Journal of Mechanical Engineering,2009,45(6):102-106.
[4] 马明旭,王成恩,张嘉易,等. 复杂产品多学科设计优化技术[J]. 机械工程学报,2008,44(6):15-26.
Ma Ming-xu, Wang Cheng-en, Zhang Jia-yi, et al. Multidisciplinary optimization technology of the complicate production[J]. Chinese Journal of Mechanical Engineering, 2008,44(6):15-26.
[5] Yang R J,Gu L, Tho C H. Multidisciplinary design optimization of a full vehicle with high performance computing[C]∥AIAA Paper,2001-1273.
[6] Kodiyalam S,Yang R J,Gu L,et al. Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment[J]. Struct Multidisc Optim,2004,26(3-4):256-263.
[7] 李玉芳, 周丽丽. 纯电动汽车电-液复合制动系统控制算法的多边界条件优化设计[J]. 中国机械工程,2012,23(21):2634-2640.
Li Yu-fang, Zhou Li-li. Optimization design of ev electro-hydraulic composite braking system control algorithm with mul-boundary conditions[J]. Chinese Journal of Mechanical Engineering,2012,23(21):2634-2640.
[8] 郑宏宇, 许文凯,刘宗宇,等. 四轮独立驱动电动汽车再生制动控制策略[J]. 吉林大学学报: 工学版, 2013, 43(3):590-594.
Zheng Hong-yu, Xu Wen-kai, Liu Zong-yu, et al. Control strategy regenerative braking for four-wheel-drive electric vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(3):590-594.
[9] 宗长富, 张继红, 陈国迎, 等. 四轮驱动与前轮驱动电动车的再生制动性能[J]. 吉林大学学报: 工学版, 2010, 40(增刊1):24-28.
Zong Chang-fu, Zhang Ji-hong, Chen Guo-ying, et al. Investigating regenerative braking performance of 4WD and FWD electric vehicle[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(Sup.1):24-28.
[10] Hellgren J, Jonasson E. Maximisation of brake energy regeneration in a hybrid electric parallel car[J]. International Journal of Electric and Hybrid Vehicles,2007,1(1):95-121.
[11] 郭金刚, 王军平, 曹秉刚. 基于优化的电动车制动力分配[J]. 机械科学与技术,2011,30(9):1495-1499.
Guo Jin-gang, Wang Jun-ping, Cao Bin-gang. Optimization based braking force distribution for electric vehicles[J]. Mechanical Science and Technology for Aerospace Engineering,2011,30(9):1495-1499.
[12] Park J S. Optimal Latin-hypercube designs for computer experiments[J]. Journal of Statistical Planning and Inference,1994,39(1):95-111.
[13] Tappeta R V, Renaud J E. Multiobjective collaborative optimization[J]. Journal of Mechanical Design,1997,119(3):403.
[14] Zhou W, Wang D, Sheng J,et al. Collaborative optimization of maintenance and spare ordering of continuously degrading systems[J]. Journal of Systems Engineering and Electronics,2012,23(1):63-70.
[15] Myers R H, Anderson-Cook C M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments[M]. USA:Wiley Press, 2009.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!