吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 703-710.doi: 10.13229/j.cnki.jdxbgxb201503004

• • 上一篇    下一篇

四轮驱动电动汽车轴间驱动力和制动力分配

李洋, 张建伟, 郭孔辉, 武冬梅   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2014-03-03 出版日期:2015-05-01 发布日期:2015-05-01
  • 通讯作者: 张建伟(1973-),男,副教授.研究方向:汽车仿真与控制.E-mail:zhangjianwei.mail@gmail.com E-mail:lidayang-1988@163.com
  • 作者简介:李洋(1987-),男,博士研究生.研究方向:汽车仿真与控制.
  • 基金资助:
    “973”国家重点基础研究发展计划项目(2011CB711201); 国防基础科研项目(B2220110006)

Driving and braking force distribution between front and rear axles for 4WD electric vehicle

LI Yang, ZHANG Jian-wei, GUO Kong-hui, WU Dong-mei   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2014-03-03 Online:2015-05-01 Published:2015-05-01

摘要: 从提高车辆操纵稳定性的角度出发,根据轮胎力的摩擦圆原理,以前、后轴车轮同时达到附着极限为目标,分析得到前、后轴驱动力和制动力的理想分配关系,并对不同分配方式下的操纵稳定性进行了仿真分析。理论分析和仿真结果表明:本文研究得到的理想分配方法,一方面可以使车辆在保证当前纵向加速度的前提下,最大限度地提高车辆的侧向稳定裕度;另一方面车辆转弯半径随纵向加速度的变化最小,具有良好的操纵性能。同时这种分配方法计算简单,对车辆状态信息依赖程度小,易于在实际控制系统中应用。

关键词: 车辆工程, 轴间力矩分配, 操纵稳定性, 四轮驱动, 电动汽车

Abstract: In order to improve the vehicle dynamic stability, the driving and braking force distribution between the front and rear axles for 4WD electric vehicle is investigated. According to the friction circle of tyre force, the ideal force distribution ratio is obtained, at which the wheels of the front and rear axles reach the adhesion limit simultaneously when the vehicles operate at various conditions. The vehicle handling stability under different distribution methods is analyzed by simulation using 4WD vehicle model. Simulation and theoretical analysis results show that the idea distribution method proposed in this work can improve utmost the lateral stability of the vehicle under the premise of ensuring the current longitudinal acceleration. In addition, for 4WD electric vehicles, the change of turning radius with longitudinal acceleration is minimized and the vehicles have the best maneuverability. Furthermore, the ideal distribution method is simple in calculation and relies little on the vehicle state information, so is easy for application in real vehicles.

Key words: vehicle engineering, force distribution between axles, handling stability, four-wheel-drive, electric vehicle

中图分类号: 

  • U461.6
[1] 郑宏宇,许文凯,刘宗宇,等. 四轮独立驱动电动汽车再生制动控制策略[J]. 吉林大学学报:工学版,2013,43(3):590-594.
Zheng Hong-yu, Xu Wen-Kai, Liu Zong-yu, et al. Control strategy for regenerative braking for four-wheel-drive electric vehicle [J]. Journal of Jilin University (Engineering and Technology Edition), 2013,43(3):590-594.
[2] 孙大许,兰凤崇,陈吉清. 基于I线制动力分配的四驱纯电动汽车制动能量回收策略的研究[J]. 汽车工程,2013,35(12):1057-1061.
Sun Da-xu, Lan Feng-chong, Chen Ji-qing. A study on the braking energy recovery strategy for a 4WD batter electric vehicle based on ideal braking force distribution (Curve I)[J]. Automobile Engineering,2013,35(12):1057-1061.
[3] Ono E, Hattori Y, Koibuchi K. Vehicle dynamics integrated control for four-wheel-distributed steering and four-wheel-distributed traction/braking system[J]. Vehicle System Dynamics,2006,44(2):139-151.
[4] Mokhiamar O,Abe M.How the four wheels should share forces in an optimum cooperative chassis control[J].Control Engineering Practice,2006,14(3):295-304.
[5] 邹广才,罗禹贡,李克强.四轮独立电驱动车辆全轮纵向力优化分配方法[J]. 清华大学学报:自然科学版,2009,49(5):111-115.
Zou Guang-cai, Luo Yu-gong, Li Ke-qiang. Tire longitudinal force optimization distribution for independent 4WD EV[J]. Journal of Tsinghua University(Science and Technology),2009,49(5):111-115.
[6] 余卓平,蒋炜,张立军. 四轮轮毂电机驱动电动汽车扭矩分配控制[J].同济大学学报:自然科学版,2008,36(8):1115-1119.
Yu Zhuo-ping, Jiang Wei, Zhang Li-jun. Torque distribution control for four wheel in-wheel-motor electric vehicle[J]. Journal of Tongji University (Natural Science),2008,36(8):1115-1119.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!