吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 15-20.doi: 10.13229/j.cnki.jdxbgxb201601003

• • 上一篇    下一篇

基于台架试验的电控液压制动系统动态特性

李静1, 杨雄1, 2, 苗卉2, 施正堂2   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.浙江亚太机电股份有限公司,杭州 311203
  • 收稿日期:2014-12-01 出版日期:2016-01-30 发布日期:2016-01-30
  • 通讯作者: 杨雄(1982-),男,博士研究生.研究方向:地面系统分析与控制.E-mail:ftbluesky@qq.com
  • 作者简介:李静(1974-),男,教授,博士生导师.研究方向:地面系统分析与控制.E-mail:liye1129@163.com
  • 基金资助:
    国家自然科学基金项目(51275206)

Dynamic characteristics of electronic hydraulic brake system based on bench test

LI Jing1, YANG Xiong1, 2, MIAO Hui2, SHI Zheng-tang2   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2.Zhejiang Asia-Pacific Mechanical and Electronic Company Limited, Hangzhou 311203, China
  • Received:2014-12-01 Online:2016-01-30 Published:2016-01-30

摘要: 分析了电控液压制动系统结构组成及工作原理,针对系统动态响应特性,利用开发的数据采集电控系统试验台,在Codewarrior开发环境下编写测试程序并嵌入系统电子控制单元,进行了系统典型工况的增压、减压和保压特性试验,获得了系统在典型工况下的压力变化特性。结果表明:系统压力动态响应和可控性良好,能够应用于车辆底盘集成控制系统中,可为理论研究、控制策略开发和实车试验提供重要参考价值。

关键词: 车辆工程, 电控液压制动系统, 动态响应, 测试试验, 压力变化特性

Abstract: The pressure characteristic of vehicle brake system is a key factor influencing the braking performance. The structure and working principle of an electronic hydraulic brake system are introduced. Aiming at the dynamic response characteristics of the system, test trails of increasing pressure, reducing pressure and maintaining pressure are conducted in typical conditions. The trails are conducted on a developed test bench with data acquisition control system, and the test program is written and embedded into the electronic control unit in Codewarrior development environment. Form these trials the brake system pressure variation characteristic in typical operating conditions is acquired. Test results show that the dynamic response and controllability of pressure are favorable, and could be applied in vehicle chassis integrated control system. This study may provide important reference for further theoretical research, development of control strategy and the real vehicle test.

Key words: vehicle engineering, electronic hydraulic brake system, dynamic response, test trials, pressure change characteristics

中图分类号: 

  • U463.5
[1] 王仁广,王怀国,张明君. Jetta GTX轿车ABS液压制动管路压力瞬态特性模型[J]. 天津工程师范学院学报,2005, 15(4):11-13.
Wang Ren-guang, Wang Huai-guo, Zhang Ming-jun. Pressure transient model of ABS hydraulic brake line for Jetta GTX car[J]. Journal of Tianjin University of Technology and Education, 2005, 15(4):11-13.
[2] 李松晶,鲍文. 采用Matlab Simulink的液压管路瞬态压力脉动分析[J]. 工程力学,2006,23(9): 184-188.
Li Song-jing, Bao Wen. Analysis of transient hydraulic pressure pulsation in pipelines using Matlab Simulink[J]. Engineering Mechanics,2006,23(9): 184-188.
[3] 谢敏松. 汽车ESP液压系统动态特性研究[D]. 重庆:重庆大学机械工程学院,2007.
Xie Min-song. Research on dynamic characteri-stics of vehicle ESP hydraulic system[D]. Chongqing:College of Mechanical Engineering,Chongqing University, 2007.
[4] 张景波,张新明. ABS/ASR集成液压系统的动态特性试验研究[J]. 液压与气动,2007(1): 28-30.
Zhang Jing-bo, Zhang Xin-ming. Research on the dynamic characteristic of ABS/ASR integrated hydraulic system[J]. Chinese Hydraulics and Pneumatics, 2007(1):28-30.
[5] van Zanten Anton T, Erhadt Rainer, Landesfeind Klaus, et al. Simulation for the development of the Bosch-VDC[C]∥SAE Paper,960486.
[6] Sorniotti Aldo, Velardocchia Mauro. Hardware-in-the-loop (HIL) testing of ESP (electronic stability program) commercial hydraulic units and implementation of new control strategies[C]∥SAE Paper, 2004-01-2770.
[7] Schuette Herbert, Waeltermann Peter. Hardware-in-the-loop testing of vehicle dynamics controllers-a technical survey[C]∥SAE Paper, 2005-01-1660.
[8] Kuang M L, Fodor M, Hrovat D. Hydraulic brake system modeling and control for active control of vehicle dynamics[C]∥The Proceedings of the American Control Conference,San Diego,CA,1999:4538-4542.
[9] 金智林. 汽车电控液压制动系统关键技术开发及实验研究[R]. 南京:南京航空航天大学能源与动力学院, 2011.
Jin Zhi-lin. Experiment study and development of Electro Hydraulic Brake System for vehicle[R].Nanjing:College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics, 2011.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!