吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 333-339.doi: 10.13229/j.cnki.jdxbgxb201602001

• 论文 •    下一篇

基于无迹卡尔曼滤波的轮毂电机驱动车辆状态观测

宋传学1, 肖峰1, 刘思含2, 李少坤1, 段亮1, 彭思仑1   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.吉林大学 机械科学与工程学院,长春 130022
  • 收稿日期:2014-09-22 出版日期:2016-02-20 发布日期:2016-02-20
  • 通讯作者: 彭思仑(1987-),男,工程师.研究方向:汽车系统动力学.E-mail:pengsilun@126.com E-mail:songchx@126.com
  • 作者简介:宋传学(1959-),男,教授,博士生导师.研究方向:汽车系统动力学.E-mail:songchx@126.com
  • 基金资助:
    科技部国际合作计划项目(2010DFB83650)

State estimation of electric vehicle with in-wheel motors based on UKF

SONG Chuan-xue1, XIAO Feng1, LIU Si-han2, LI Shao-kun1, DUAN Liang1, PENG Si-lun1   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2.College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2014-09-22 Online:2016-02-20 Published:2016-02-20

摘要: 针对车辆质心(CG)侧偏角和轮胎附着力等参数无法用传感器直接测量得到的情况,本文设计了一种基于无迹卡尔曼滤波的车辆状态观测器.该方法考虑了车辆运行工况变化时的非线性因素,引入了非线性动态轮胎模型来提高轮胎侧向力的估算精度.与动力学软件AMESim建立的参考模型进行了对比仿真,仿真结果表明:本文建立的观测器能够准确估算出轮毂电机驱动汽车的状态参数.

关键词: 车辆工程, 轮毂电机驱动汽车, 状态观测, 无迹卡尔曼滤波

Abstract: For four-wheel independently drive in-wheel motors electric vehicle, the dynamic control systems, such as direct yaw moment control, can be easily achieved. Accurate estimation of vehicle state variables and uncertain parameters can improve the robustness of the vehicle dynamic control system. Various sensors are generally equipped to acquire the vehicle dynamics. For both technical and economic reasons, some fundamental vehicle parameters, such as the sideslip angle and tire-road forces can hardly be obtained directly by sensors. Therefore, a state observer is developed to estimate these parameters based on Unscented Kalman Filter (UKF). In addition, a nonlinear dynamics tire model is utilized to improve the accuracy of tire lateral force estimation. Compared to the reference model built in AMEsim, the simulation results show that the proposed observer can provide the precision values of the vehicle state.

Key words: vehicle engineering, in-wheel-motor vehicle, state estimation, unscented kalman filter

中图分类号: 

  • U461
[1] Hori Y. Future vehicle driven by electricity and control-research on four-wheel-motored "UOT Electric March II"[J]. IEEE Transactions on Industrial Electronics,2004, 51(5): 954-962.
[2] Sakai S, Hori Y. Advanced motion control of electric vehicle with fast minor feedback loops: basic experiments using the 4-wheel motored EV "UOT Electric March II"[J]. JSAE Review,2001, 22(4): 527-536.
[3] 李刚,宗长富,陈国迎,等. 线控转向四轮独立驱动电动车的AFS/DYC集成控制[J]. 华南理工大学学报:自然科学版,2012,40(3):150-155.
Li Gang,Zong Chang-fu,Chen Guo-ying,et al. Integrated AFS/DYC control of steering-by-wire 4WID electric vehicle[J]. Journal of South China University of Technology (Natural Science Edition),2012,40(3):150-155.
[4] He P, Hori Y.Resolving actuamr redundancy for 4WD electric vehicle bysequential quadratic optimum method[DB/OL].[2013-12-16]. http://www.hori.k.u-tokyo.ac.jp/hori_lab/paper_2009/old-papers/ka/hukui_ka.pdf.
[5] Wenzel T A, Burnham K J, Blundell M V. Dual extended Kalman filter for vehicle state and parameter estimation[J]. Vehicle System Dynamics, 2006, 44(2): 153-171.
[6] Kim J. Identification of lateral tyre force dynamics using an extended Kalman filter from experimental road test data[J]. Control Engineering ,2009, 17(3): 357-367.
[7] Julier S J,Uhlmann J K. A new extension of the kalman filter to nonlinear systems[C]//Proceedings of the International Symposium on Aerospace/Defense Sensing,Simulation and Controls,Orlando,Florida,USA,1997:182-193.
[8] Doumiati M, Victorino A, Charara A, et al. Estimation of vehicle lateral tire-road forces: a comparison between extended and unscented kalman filtering[C]//European Control Conference, Budapest, Hungary, 2009:4804-4809.
[9] 解少博,林程. 基于无迹卡尔曼滤波的车辆状态与参数估计[J]. 农业机械学报,2011,42(12):6-12.
Xie Shao-bo,Lin Cheng.State and parameters estimation of vehicle based on UKF[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011,42(12):6-12.
[10] 邓永停, 李洪文, 王建立, 等. 基于卡尔曼滤波器的交流伺服系统自适应滑模控制[J]. 光学精密工程, 2014, 22(8): 2088-2095.
Deng Yong-ting, Li Hong-wen, Wang Jian-li, et al. Adaptive sliding mode control for AC servo system based on Kalman filter[J]. Optics and Precision Engineering, 2014, 22(8): 2088-2095.
[11] Pacejka H B. Tire and Vehicle Dynamics[M]. Oxford :Elsevier, 2012:172-215.
[12] Dugoff H, Fanches P, Segel L. An analysis of tire properties and their influence on vehicle dynamic performance[C]//SAE Paper, 1970.
[13] Gillespie T D. Fundamental of vehicle dynamics[C]//SAE Paper, 1992.
[14] Rajamani R. Vehicle Dynamics and Control[M]. Berlin, Germany: Springer-Verlag, 2005:389-393.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!