吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 360-365.doi: 10.13229/j.cnki.jdxbgxb201602005

• 论文 • 上一篇    下一篇

基于三维激光雷达和深度图像的自动驾驶汽车障碍物检测方法

王新竹1, 李骏1, 2, 李红建2, 尚秉旭2   

  1. 1.吉林大学 汽车工程学院, 长春 130022;
    2.中国第一汽车集团公司 技术中心, 长春 130021
  • 收稿日期:2014-09-22 出版日期:2016-02-20 发布日期:2016-02-20
  • 通讯作者: 李骏(1958-),男,中国工程院院士,博士生导师.研究方向:动力工程,智能驾驶.E-mail:ljun@rdc.faw.com.cn E-mail:xzwang12@mails.jlu.edu.cn
  • 作者简介:王新竹(1985-),男,博士研究生.研究方向:自动驾驶技术.E-mail:xzwang12@mails.jlu.edu.cn
  • 基金资助:

    "973"国家重点基础研究发展计划项目(2012CB723801)

-Obstacle detection based on 3D laser scanner and range image for intelligent vehicle

WANG Xin-zhu1, LI Jun1, 2, LI Hong-jian2, SHANG Bing-xu2   

  1. 1.College of Automotive Engineering, Jilin University, Changchun 130022,China;
    2.China FAW Group Corporation R&D Center, Changchun 130021, China
  • Received:2014-09-22 Online:2016-02-20 Published:2016-02-20

摘要:

介绍了一种基于三维激光雷达和深度图像的障碍物检测方法.首先,根据Velodyne HDL-32E激光雷达自身工作特性,将点云数据以矩阵方式表达,并表示为深度图像;然后,根据点云中各点的距离信息在深度图像横向上进行聚类;最后,在纵向上建立线性模型,对聚类点进行分类,划分出地面点集和障碍物点集.仿真实验结果表明:本方法能够抑制障碍物遮挡造成的误判,并能够很好地适应地形变化.

关键词: 车辆工程, 三维点云, 障碍物检测, 环境感知

Abstract:

An obstacle detection method based on 3D laser scanner and range image is proposed for intelligent vehicle. First, the range image of one scan is established based on the Welodyne HDL-32E laser scanner data. Then, according to the range image analysis, the point cloud in one row of the image is classified into several groups. Finally, the point clouds in different groups are detected by a linear model in column. Simulation reveals that using the proposed method, the rate of false detection caused by the obstacle lock is reduced, and this method well adapts to the terrain change.

Key words: vehicle engineering, 3D point clouds, obstacle detection, environmented perception

中图分类号: 

  • U461
[1] Reina G, Underwood J, Brooker G, et al. Radar‐based perception for autonomous outdoor vehicles[J]. Journal of Field Robotics, 2011, 28(6): 894-913.
[2] Alvarez J M A, Lopez A M. Road detection based on illuminant invariance[J]. Intelligent Transportation Systems, IEEE Transactions on, 2011, 12(1): 184-193.
[3] Danescu R, Nedevschi S. Probabilistic lane tracking in difficult road scenarios using stereovision[J]. Intelligent Transportation Systems, IEEE Transactions on, 2009, 10(2): 272-282.
[4] Rotaru C, Graf T, Zhang J. Color image segmentation in HSI space for automotive applications[J]. Journal of Real-Time Image Processing, 2008, 3(4): 311-322.
[5] 王荣本, 李琳辉, 郭烈, 等. 基于立体视觉的越野环境感知技术[J]. 吉林大学学报: 工学版, 2008, 38(3):520-524.
Wang Rong-ben, Li Lin-hui, Guo Lie, et al. Stereo vision based cross-country environmental perception technique[J]. Journal of Jilin University(Engineering and Technology Edition), 2008,38(3):520-524.
[6] Himmelsbach M, Wuensche H. Fast segmentation of 3d point clouds for ground vehicles[C]//Intelligent Vehicles Symposium (IV), IEEE, 2010: 560-565.
[7] Steinhauser D, Ruepp O, Burschka D. Motion segmentation and scene classification from 3D LIDAR data[C]//Intelligent Vehicles Symposium, IEEE, 2008: 398-403.
[8] Klasing K, Wollherr D, Buss M. A clustering method for efficient segmentation of 3D laser data[C]//ICRA,Pasadena,California,USA,2008: 4043-4048.
[9] Douillard B, Underwood J, Kuntz N, et al. On the segmentation of 3D LIDAR point clouds[C]//Robotics and Automation (ICRA), 2011 IEEE International Conference on,IEEE, 2011: 2798-2805.
[10] Moosmann F. Interlacing Self-Localization, Moving Object Tracking and Mapping for 3D Range Sensors[D].Germany: KIT Scientific Publishing, 2013.
[11] 周森, 郭永彩, 高潮, 等. 基于三维激光扫描的移动大尺寸圆柱体工件长度快速检测系统[J]. 光学精密工程, 2014, 22(6): 1524-1530.
Zhou Sen, Guo Yong-cai, Gao Chao, et al. Rapid length measuring system for mobile and large scale cylinder workpieces based on 3D laser scanning[J].Optics and Precision Engineering, 2014, 22(6): 1524-1530.
[12] Milella A, Reina G, Underwood J, et al. Combining radar and vision for self-supervised ground segmentation in outdoor environments[C]//Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, IEEE, 2011: 255-260.
[13] Milella A, Reina G, Underwood J, et al. Visual ground segmentation by radar supervision[J]. Robotics and Autonomous Systems, 2014,62(5):696-706.
[14] Häselich M, Arends M, Lang D, et al. Terrain classification with Markov random fields on fused camera and 3D laser range data[C]//ECMR,Örebro,Sweden,2011: 153-158.
[15] Hu X, Rodriguez F S A, Gepperth A. A multi-modal system for road detection and segmentation[C]//Intelligent Vehicles Symposium Proceedings, IEEE, 2014: 1365-1370.
[16] Álvarez J M, Lumbreras F, Gevers T, et al. Geographic information for vision-based road detection[C]//Intelligent Vehicles Symposium (IV), IEEE, 2010: 621-626.
[17] Básaca-Preciado L C, Sergiyenko O Y, Rodríguez-Quinonez J C, et al. Optical 3D laser measurement system for navigation of autonomous mobile robot[J]. Optics and Lasers in Engineering, 2014, 54: 159-169.
[18] Urmson C, Anhalt J, Bagnell D, et al. Autonomous driving in urban environments: boss and the urban challenge[J]. Journal of Field Robotic, 2008, 25(8): 425-466.
[19] Montemerlo M, Becker J, Bhat S, et al. Junior: The stanford entry in the urban challenge[J].Journal of Field Robotics, 2008, 25(9): 569-597.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!