吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (3): 685-691.doi: 10.13229/j.cnki.jdxbgxb201603001

• 论文 •    下一篇

基于状态反馈的车辆底盘集成H鲁棒控制

李静1, 张家旭1, 2   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.中国第一汽车集团 技术中心,长春 130011
  • 收稿日期:2014-09-05 出版日期:2016-06-20 发布日期:2016-06-20
  • 作者简介:李静(1974),男,教授,博士生导师.研究方向:汽车地面力分析与控制.E-mail:liye1129@163.com
  • 基金资助:
    国家自然科学基金项目(51275206).

H Robust control for integrated chassis system based on state feedback

LI Jing1, ZHANG Jia-xu1, 2   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2.Research and Development Center, China FAW Group Corporation, Changchun 130011, China
  • Received:2014-09-05 Online:2016-06-20 Published:2016-06-20

摘要: 采用二自由度车辆模型作为被控对象简化模型,提出了一种基于状态反馈的H鲁棒控制方法的车辆底盘集成控制策略,协调控制主动前轮转向系统和直接横摆力矩控制系统。直接横摆力矩控制系统基于HSRI轮胎模型的逆运算和PI控制实现。通过J-turn工况和正弦延迟工况对H鲁棒控制器进行仿真验证,结果表明,所设计的车辆底盘集成H鲁棒控制器具有良好的控制效果,能够明显地改善车辆的操纵稳定性。

关键词: 车辆工程, 底盘集成控制, H∞, 鲁棒控制, 主动前轮转向, 直接横摆力矩控制

Abstract: Based on the strength of state feedback, a H robust control approach for integrated chassis system is proposed. The two degrees of freedom vehicle model is employed as a simplified model of the controlled object. This control approach is used to coordinate the active front wheel steering system and the direct yaw moment control system. The direct yaw moment control system is based on the inverse operation of HSRI tire model and PI control. Two typical cases, J-turn and sine with dwell, are simulated. Results show that the proposed H robust control approach for integrated chassis system has good control effect, and can significantly improve the handling and stability of the vehicle.

Key words: vehicle engineering, integrated chassis control, H∞, robust control, active front wheel steering, direct yaw moment control

中图分类号: 

  • U461
[1] Tang Xin-peng. Study of integrated chassis control system based on virtual prototype simulation[C]∥SAE Paper,2013-01-0424.
[2] 李静,余春贤.基于模糊与PID的车辆底盘集成控制系统[J]. 吉林大学学报:工学版,2013,43(Sup.1):509-513.
Li Jing,Yu Chun-xian. Vehicle chassis integrated control system based on fuzzy and PID[J]. Journal of Jilin University(Engineering and Technology Edition), 2013,43(Sup.1):509-513.
[3] 杨建森,郭孔辉,丁海涛,等.基于模型预测控制的汽车底盘集成控制[J].吉林大学学报:工学版,2011,41(Sup.2):1-5.
Yang Jian-sheng, Guo kong-hui,Ding Hai-tao,et al. Vehicle integrated chassis control based on model predictive control[J]. Journal of Jilin University(Engineering and Technology Edition),2011,41(Sup.2):1-5.
[4] Nagai Masao, Yamanaka Sachiko, Hirano Yutaka. Integrated control of active rear wheel steering and direct yaw moment control using braking force[J]. JSME International Journal, 1999, 42(2): 301-308.
[5] Harada Massanori, Harada Hiroshi. Analysis of lateral stability with integrated control of suspension and steering systems[J]. JSAE Review, 1999, 20(4): 465-470.
[6] Karbalaei R,Ali M, Tabatabaei S H, et al. Integrated control of AFS and DYC in the vehicle yaw stability management system using fuzzy logic control[C]∥SAE Paper , 2008-01-1262.
[7] Shen Xiao-ming, Yu Fan. A novel integrated chassis controller design combining active suspension and 4WS[C]∥SAE Paper, 2005-01-3566.
[8] 俞立. 鲁棒控制-线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2002: 41-44.
[9] 喻凡, 林逸. 汽车系统动力学[M]. 北京: 机械工业出版社, 2005: 212-218.
[10] 郭孔辉, 丁海涛. 轮胎附着极限下差动制动对汽车横摆力矩的影响[J]. 汽车工程, 2002, 24(2): 101-104.
Guo Kong-hui, Ding Hai-tao. The effect of yaw moment through differential braking under tire adhesion limit[J]. Automotive Engineering, 2002, 24(2): 101-104.
[11] Howard D, Francher P S, Leonard S. An analysis of tire traction properties and their influence on vehicle dynamic performance[C]∥SAE Paper, 700377, 1970.
[12] Howe J G, Garrott W R, Forkenbrock G J. An expermental examination of selected test maneuvers that may induce on-road, untripped light vehicle rollover-phase Ⅱ of NHTSA's 1997-1998 light vehicle rollover research program[R]. NHTSA Technical Report, DOT HS 808 977, 1999.
[13] FMVSS 126.Electronic stability control system[S].Washington,DC:National Highway Traffic Safety Adiministration,2007.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!