吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1344-1353.doi: 10.13229/j.cnki.jdxbgxb201604047

• 论文 • 上一篇    下一篇

基于星载混合相控阵MIMO SAR的多方向测绘带成像及二维DBF处理

张乐乐, 陈殿仁, 赵爽   

  1. 长春理工大学 电子信息工程学院,长春 130022
  • 收稿日期:2015-07-06 出版日期:2016-07-20 发布日期:2016-07-20
  • 通讯作者: 陈殿仁 (1953-), 男,教授,博士生导师.研究方向:雷达信号处理,毫米波雷达技术,雷达目标模拟.E-mail:dianrenchen@163.com
  • 作者简介:张乐乐(1987-),男,博士研究生.研究方向:高分辨率宽测绘带SAR成像技术.E-mail:andy_zhang1987@126.com
  • 基金资助:
    国防装备预研项目(40405050302); 装备预研基金项目(9140A17010213Bq03003)

Multi-direction swath imaging and two-dimensional digital beamforming based on space-born hybrid phased-MIMO SAR

ZHANG Le-le, CHEN Dian-ren, ZHAO Shuang   

  1. School of Electronics and Information Engineering, Changchun University of Science and Technology,Changchun 130022,China
  • Received:2015-07-06 Online:2016-07-20 Published:2016-07-20

摘要: 为解决图像模糊和图像混叠的问题,提出了将混合相控阵MIMO雷达与SAR相结合(混合相控阵MIMO SAR)的多方向测绘带成像方法,且提出二维数字波束合成(DBF)处理技术以实现无模糊宽测绘带高分辨率成像。首先建立该方法信号模型,推导了混合相控阵MIMO SAR的实际控制矩阵。然后针对多方向成像易造成图像混叠和距离模糊的不足,提出俯仰向自适应DBF算法,实现了图像混叠部分的有效分离且对模糊有很好的抑制。最后利用方位向加权对带外模糊置零。仿真结果表明该二维DBF处理技术的有效性。与星载双向和相控阵多向成像方法相比,该方法工作方式更灵活,能够满足多功能星载SAR的要求。

关键词: 信息处理技术, 星载混合相控阵MIMO SAR, 信号模型, 二维DBF, 图像混叠, 图像模糊

Abstract: An imaging method of multi-direction swath based on space-born hybrid phased-MIMO SAR is proposed, which combines traditional phased-array radar with a new technique for multiple-input multiple-output (MIMO) radar, and the 2-D DBF for this system is presented to achieve unambiguous wide swath imaging with high azimuth resolution. Firstly, the signal model was built and the virtual control matrix of the Hybrid Phased-MIMO SAR was derived. Secondly, considering the image overlap and range ambiguity caused by multiple direction imaging, the adaptive Digital Beamforming (DBF) algorithm in range was proposed to separate the overlap area in images and to suppress the ambiguity. Finally, azimuth ambiguity that exceeds the signal bandwidth is suppressed by weighting in azimuth. Simulation results validate the effectiveness of this 2-D processing. Compared with space-born bi-direction SAR by two major lobes and multi-direction SAR by phased array, operation mode will be more flexible by using our method, and satisfy requests of multifunctional space-born SAR.

Key words: information processing, space-born phased-MIMO SAR, signal model, 2-D BDF, image overlap, image ambiguity

中图分类号: 

  • TN959.74
[1] Gebert N, Krieger G, Moreira A. Multichannel azimuth processing in ScanSAR and TOPS mode operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7):2994-3008.
[2] Gao Can-guan,Wang R,Deng Yun-kai, et al. Large-scene sliding spotlight SAR using multiple channels in azimuth[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5):1006-1010.
[3] Henke D, Magnard C, Frioud M, et al. Moving-target tracking in single-channel wide-beam SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11):4735-4747.
[4] Wollstadt S, Prats-Iraola P, Lopez-Dekker P, et al. Bidirectional SAR imaging mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):601-614.
[5] Ender J H G, Brenner A R. PAMIR—a wideband phased array SAR/MTI system[J]. IEE Proceedings Radar, Sonar and Navigation, 2003, 150(3):165-172.
[6] Wang Wen-qin. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3):1615-1625.
[7] Kim J H, Younis M, Prats-Iraola P,et al. First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):1-11.
[8] Krieger G, Gebert N, Moreira A. Multidimensional waveform encoding: a new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):31-46.
[9] Feng Fan, Li Shi-qiang, Yu Wei-dong,et al. Study on the processing scheme for space-time waveform encoding SAR system based on two-dimensional digital beamforming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50 (3):910-932.
[10] Hassanien A, Vorobyov S A. Phased-MIMO radar: a tradeoff between phased-array and MIMO radars[J]. IEEE Transactions on Signal Processing, 2010, 58(6):1-33.
[11] Fuhrmann D R, Browning J P, Rangaswamy Muralidhar. Signaling strategies for the hybrid MIMO phased-array radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1):66-78.
[12] Hua G, Abeysekera S S. Receiver design for range and doppler sidelobe suppression using MIMO and phased-array radar[J]. IEEE Transactions on Signal Processing, 2013, 61(6):1315-1326.
[13] Wang Wen-qin, Shao Huai-zong. A flexible phased-MIMO array antenna with transmit beamforming[J]. International Journal of Antennas and Propagation, 2012, 10(6):473-475.
[14] Krieger G, Gebert N, Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4):260-264.
[15] Wang Wen-qin. High altitude platform multichannel SAR for wide-area and staring imaging[J]. IEEE A&E Systems Magazine, 2014, 29(5):12-17.
[16] 冯帆,李世强,禹卫东. 一种多维编码全极化SAR回波分离改进方法[J]. 电子与信息学报,2012,34(1):172-178.
Feng Fan, Li Shi-qiang, Yu Wei-dong. An improved approach to separating echoes in multidimensional waveform encoding fully-polarimetric SAR[J]. Journal of Electronics&Information Technology,2012,34(1):172-178.
[17] Kou Guang-jie, Wang Zhen-song, Yao Ping. Multiple beams spaceborne SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4):3363-3375.
[18] Tseng C Y, Griffiths L J. A unified approach to the design of linear constraints in minimum variance adaptive beamformers[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(12):1533-1542.
[19] Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4):397-401.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .