吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 1836-1844.doi: 10.13229/j.cnki.jdxbgxb201606011

• 论文 • 上一篇    下一篇

驾驶人换道意图实时识别模型评价及测试

郭应时1, 付锐1, 2, 赵凯1, 马勇1, 袁伟1   

  1. 1.长安大学 汽车学院,西安 710064;
    2.长安大学 汽车运输安全保障技术交通行业重点实验室,西安 710064
  • 收稿日期:2015-05-20 出版日期:2016-11-20 发布日期:2016-11-20
  • 通讯作者: 付锐(1965-),女,教授,博士生导师.研究方向:道路交通安全技术.E-mail:furui@chd.edu.cn
  • 作者简介:郭应时(1964-),男,教授,博士生导师.研究方向:车辆安全技术.E-mail:guoys@chd.edu.cn
  • 基金资助:

    教育部创新团队发展计划项目(IRT1286); 国家自然科学基金项目(61473046, 61374196,51305041); 中央高校基本科研业务费专项资金项目(310822153101, 310822161006,2014G3222004,2013G2222029)

Evaluation and test of real-time identification models of driver's lane change intention

GUO Ying-shi1, FU Rui1, 2, ZHAO Kai1, MA Yong1, YUAN Wei1   

  1. 1.School of Automobile, Chang'an University, Xi'an 710064, China;
    2.Key Laboratory of Automotive Transportation Safety Technology, Ministry of Transport, Chang'an University, Xi'an 710064, China
  • Received:2015-05-20 Online:2016-11-20 Published:2016-11-20

摘要:

通过分析驾驶人换道行为和车辆运动状态,研究了意图换道和车道保持阶段的差异性,并基于BP神经网络模型和证据理论识别模型,对意图换道进行了实时识别试验。结果表明:两种模型在换道前3 s对意图换道样本识别准确率分别为78.26%、45.22%,在换道时刻的识别准确率分别为99.13%、86.96%;随机选择样本对两种识别模型进行验证,意图换道样本的识别准确率分别为86.00%、96.00%,车道保持样本的识别准确率分别为21.05%、78.95%,同时模型识别出正确样本的最长时间均小于0.5 s,表明证据理论识别模型具有较高的优越性和实用性。

关键词: 交通运输安全工程, 驾驶行为, 意图识别, BP神经网络, 证据理论

Abstract:

The difference between lane change intention stage and lane keeping stage was studied by analyzing the driver lane change performance and the vehicle movement parameters. Based on BP neural networks model and D-S evidence theory model, the real-time identification of lane change intension tests were carried out. The results show that that sample identification accuracies of the two models in three seconds before the lane change are 78.3% and 45.2% respectively. The identification accuracies just at the moment of lane change are 99.13% and 86.96% respectively. By verifying the two models with random sample data, the identification accuracies for lane change intension are 86% and 96%, while for lane keeping are 21.05% and 78.95% respectively. The maximum time of the models for accurate identification is less than 0.5 second. It indicates that the evidence theory identification model is more applicable and reliable in both accuracy and timeliness.

Key words: engineering of communications and transportation safety, driving behavior, intent identification, BP neural network, theory evidence

中图分类号: 

  • U491.25
[1] 侯海晶. 高速公路驾驶人换道意图识别方法研究[D]. 长春: 吉林大学交通学院, 2013.
Hou Hai-jing. Research on lane-changing intention recognition method for freeway driver[D].Changchun: College of Transportation, Jilin University, 2013.
[2] 李亚秋,吴超仲,马晓凤,等. 基于EKF学习方法的BP神经网络汽车换道意图识别模型研究[J]. 武汉理工大学学报:交通科学与工程版,2013,37(4):843-847.
Li Ya-qiu, Wu Chao-zhong, Ma Xiao-feng, et al. A recognition model for lane change intention based on neural network with EKF algorithm[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering),2013,37(4):843-847.
[3] 马勇,石涌泉,付锐,等. 驾驶人分心时长对车道偏离影响的实车试验[J]. 吉林大学学报:工学版,2015,45(4):1095-1101.
Ma Yong, Shi Yong-quan, Fu Rui, et al. Impact of driver's distracted driving time on vehicle lane departure[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(4): 1095-1101.
[4] Salvucci D D, Liu A. The time course of a lane change: driver control and eye-movement behavior[J]. Transportation Research Part F: Traffic Psychology and Behavior,2002,5(2):123-132.
[5] Jang Y M, Mallipeddi R, Lee M. Driver's lane-change intent identification based on pupillary variation[C]∥IEEE International Conference on Consumer Electronics,New York, 2014:197-198.
[6] 马勇,付锐. 驾驶人视觉特性与行车安全研究进展[J]. 中国公路学报,2015,28(6):82-94.
Ma Yong, Fu Rui. Research and development of drivers visual behavior and driving safety[J]. China Journal of Highway and Transport,2015,28(6):82-94.
[7] Liu A, Pentland A. Towards real-time recognition of driver intentions[C]∥IEEE Conference on Intelligent Transportation System, New York,1997:236-241.
[8] Tezuka S, Soma H, Tanifuji K. A study of driver behavior inference model at time of lane change using Bayesian networks[C]∥Proceedings of IEEE International Conference on Industrial Technology, New York,2006:2308-2313.
[9] Dogan U, Edelbrunner J, Iossifidis I. Autonomous driving: a comparison of machine learning techniques by means of the prediction of lane change behavior[C]∥IEEE International Conference on Robotics and Biomimetics,New York,2011:1837-1843.
[10] Doshi A. Learning and inferring human intentions: exploration of attention and interactivity[D]. San Diego: University of California, 2010.
[11] Doshi A, Trivedi M M. On the roles of eye gaze and head dynamics in predicting driver's intent to change lanes[J]. IEEE Transactions on Intelligent Transportation Systems,2009,10(3): 453-462.
[12] 彭金栓. 基于视觉特性与车辆相对运动的驾驶人换道意图识别方法[D]. 西安:长安大学汽车学院,2012.
Peng Jin-shuan. Driver's lane change intent identification based on visual characteristics and vehicles' relative movements[D]. Xi'an: School of Automobile, Chang'an University, 2012.
[13] 袁伟,付锐,郭应时,等. 基于视觉特性的驾驶人换道意图识别[J]. 中国公路学报,2013,26(4):132-138.
Yuan Wei, Fu Rui, Guo Ying-shi et al. Driver's lane changing intention identification based on visual characteristics[J]. China Journal of Highway and Transport, 2013,26(4): 132-138.
[14] 马勇,付锐,郭应时,等. 基于实车试验的驾驶人换道行为多参数预测[J]. 长安大学学报:自然科学版,2014,34(5):101-108.
Ma Yong, Fu Rui, Guo Ying-shi, et al. Multi-parameter prediction of driver's lane change behavior based on real-world driving tests[J]. Journal of Chang'an University (Natural Science Edition), 2014,34(5):101-108.
[15] 王玉海,宋健,李兴坤.基于模糊推理的驾驶员意图识别研究[J]. 公路交通科技, 2005, 22(12):113-118.
Wang Yu-hai,Song Jian,Li Xing-kun. Study on inference of driver's intentions based on fuzzy reasoning[J]. Journal of Highway and Transportation Research and Development,2005,22(12):113-118.
[16] 吴海波. 基于BP神经网络的驾驶人车道变换行为预测[D]. 西安:长安大学汽车学院,2010.
Wu Hai-bo. The prediction of driver's lane-changing behavior based on BP neural network[D]. Xi'an: School of Automobile, Chang'an University, 2010.
[17] 王畅,付锐,张琼,等. 换道预警系统中参数TTC特性研究[J]. 中国公路学报,2015,28(8):91-100,108.
Wang Chang,Fu Rui,Zhang Qiong, et al. Research on parameter TTC characteristics of lane change warning system[J]. China Journal of Highway and Transport,2015,28(8):91-100,108.
[1] 代存杰,李引珍,马昌喜,柴获,牟海波. 不确定条件下危险品配送路线多准则优化[J]. 吉林大学学报(工学版), 2018, 48(6): 1694-1702.
[2] 刘东亮, 王秋爽. 基于NGSIM数据的车辆瞬时速度获取方法[J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[3] 王芳荣, 郭柏苍, 金立生, 高琳琳, 岳欣羽. 次任务驾驶安全评价指标筛选及其权值计算[J]. 吉林大学学报(工学版), 2017, 47(6): 1710-1715.
[4] 谭立东, 刘丹, 李文军. 基于蝇复眼的交通事故现场全景图像阵列仿生设计[J]. 吉林大学学报(工学版), 2017, 47(6): 1738-1744.
[5] 万平, 吴超仲, 林英姿, 马晓凤. 基于驾驶行为多元时间序列特征的愤怒驾驶状态检测[J]. 吉林大学学报(工学版), 2017, 47(5): 1426-1435.
[6] 李显生, 孟祥雨, 郑雪莲, 程竹青, 任圆圆. 非满载罐体内液体冲击动力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 737-743.
[7] 王占中, 赵利英, 曹宁博. 基于多层编码遗传算法的危险品运输调度模型[J]. 吉林大学学报(工学版), 2017, 47(3): 751-755.
[8] 王德军, 吕志超, 王启明, 张贤达, 王子健. 基于汽缸压力辨识的发动机失火故障诊断[J]. 吉林大学学报(工学版), 2017, 47(3): 917-923.
[9] 黄璇, 郭立红, 李姜, 于洋. 改进粒子群优化BP神经网络的目标威胁估计[J]. 吉林大学学报(工学版), 2017, 47(3): 996-1002.
[10] 王海玮, 温惠英, 刘敏. 夜间环境驾驶员精神负荷的生理特性评估与实验[J]. 吉林大学学报(工学版), 2017, 47(2): 420-428.
[11] 徐进, 陈薇, 周佳, 罗骁, 邵毅明. 汽车转向盘操作与驾驶负荷的相关性[J]. 吉林大学学报(工学版), 2017, 47(2): 438-445.
[12] 栾磊, 赵晓晖, 徐勇军. 面向区域的认知无线电系统的频谱感知模型[J]. 吉林大学学报(工学版), 2016, 46(4): 1304-1312.
[13] 孙璐, 徐建, 崔相民. 面板数据模型分析及交通事故预测[J]. 吉林大学学报(工学版), 2015, 45(6): 1771-1778.
[14] 李寿涛, 田微, 郭鹏程, 马用学, 张浩, 王楠. 基于模糊自适应的BP神经网络动态行驶车辆车长测算[J]. 吉林大学学报(工学版), 2015, 45(6): 1881-1886.
[15] 高明亮, 于生宝, 郑建波, 徐畅, 张堃, 栾卉. PSBP在高密度电阻率法二维反演中的应用[J]. 吉林大学学报(工学版), 2015, 45(6): 2026-2033.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .