吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 74-82.doi: 10.13229/j.cnki.jdxbgxb20161178

• 论文 • 上一篇    下一篇

基于弹性连接结构的电动轮纵向振动特性

毛钰, 左曙光, 林福, 曹佳楠, 郑玉平   

  1. 同济大学 新能源汽车工程中心,上海 201804
  • 收稿日期:2016-11-01 出版日期:2018-02-26 发布日期:2018-02-26
  • 通讯作者: 左曙光(1968-),男,教授,博士生导师. 研究方向:汽车系统动力学与控制.E-mail: sgzuo@tongji.edu.cn
  • 作者简介:毛钰(1992-),男,博士研究生.研究方向:电动轮系统振动与控制.E-mail:maoyu1224@163.com
  • 基金资助:
    国家自然科学基金项目(51375343)

Longitudinal vibration characteristics analysis of electric wheel based on elastic coupling structure

MAO Yu, ZUO Shu-guang, LIN Fu, CAO Jia-nan, ZHENG Yu-ping   

  1. Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China
  • Received:2016-11-01 Online:2018-02-26 Published:2018-02-26

摘要: 基于现有轮毂电机和轮辋刚性连接的电动轮结构形式,结合轮毂电机转矩波动激励和电动轮系统纵扭耦合振动模型揭示了轮胎和电机纵向振动问题,并确定了系统纵向振动所对应的主要参与模态,指出由于对振动主导的两阶旋转模态频率相距较大,电动轮系统在电机工作范围内整体振动特性较差。针对上述问题,采用轮毂电机和轮辋弹性连接的结构形式以规划电动轮系统模态特征。分析表明弹性连接能够降低电动轮系统两阶旋转模态频率并使二者相互靠近,进而能够缩短使电动轮系统产生共振的敏感电机转速范围,从而改善系统整体振动特性。最后通过连接参数对振动特性的影响分析确定了能够实现减振效果的弹性连接参数合理取值范围,为电动轮系统采用弹性连接构型进行优化设计提供了参考。

关键词: 车辆工程, 电动轮系统, 纵向振动, 弹性连接, 旋转模态

Abstract: Considering the existing electric wheel structure with rigid connection between in-wheel motor and rim, the longitudinal vibrations of tire and in-wheel motor are revealed based on torque ripple of in-wheel motor and the coupled longitudinal- torsional vibration model of electric wheel system. The analysis of corresponding modes to longitudinal vibration indicates that, the overall vibration performance of the electric wheel system during motor operation range deteriorates due to the separation of two dominant rotational modes. Therefore, structure scheme with elastic connection between in-wheel motor and rim is adopted to deploy modal parameters of the electric wheel system. Comparative analysis shows that elastic connection structure results in lower and closer frequencies of the two dominant rotational modes, thus improving the overall vibration performance. The reasonable connection parameter ranges are determined through impact factors of the tire and in-wheel motor longitudinal vibration, providing reference for structure design of electric wheel for vibration attenuation purpose.

Key words: vehicle engineering, electric wheel system, longitudinal vibration, elastic connection, rotational mode

中图分类号: 

  • U463
[1] Tahami F, Kazemi R, Farhanghi S.A novel driver assist stability system for all-wheel-drive electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2003, 52(3): 683-692.
[2] Chen Y, Wang J M.Design and evaluation on electric differentials for overactuated electric ground vehicles with four independent in-wheel motors[J]. IEEE Transactions on Vehicular Technology, 2012, 61(4): 1535-1542.
[3] Wang R, Chen Y, Feng D, et al.Development and performance characterization of an electric ground vehicle with independently-actuated in-wheel motors[J]. Journal of Power Sources,2011,196(8): 3962-3971.
[4] Luo Y T, Tan D.Study on the dynamics of the in-wheel motor system[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3510-3518.
[5] Wang Y Y, Li P, Ren G.Electric vehicles with in-wheel switched reluctance motors: coupling effects between road excitation and the unbalanced radial force[J]. Journal of Sound and Vibration, 2016, 372: 69-81.
[6] Sun W, Li Y, Huang J, et al.Vibration effect and control of in-wheel switched reluctance motor for electric vehicle[J]. Journal of Sound and Vibration, 2015, 338: 105-120.
[7] Song Z Y,Li j,Wei Y T,et al.Interaction of in-wheel permanent magnet synchronous motor with tire dynamics[J]. Chinese Journal of Mechanical Engineering,2015, 28(3): 470-478.
[8] Li J Q,Song Z Y,Wei Y T,et al.Influence of tire dynamics on slip ratio estimation of independent driving wheel system[J]. Chinese Journal of Mechanical Engineering, 2015, 27(6): 1203-1209.
[9] 张立军,钱敏,余卓平. 轮毂电机-轮胎总成非线性动力学特性仿真分析[C]∥第五届中国智能交通年会暨第六届国际节能与新能源汽车创新发展论坛优秀论文集(下册), 北京: 电子工业出版社, 2009: 162-168.
[10] Nagya Go.Development of an in-wheel drive with advanced dynamic-damper mechanism[J]. JSAE Review, 2003, 24(4): 477-481.
[11] 马英, 邓兆祥, 谢丹. 电动轮车辆轮内主动减振系统设计与研究[J]. 系统仿真学报, 2014, 26(11): 2770-2778.
Ma Ying, Deng Zhao-xiang, Xie Dan.Design and study of active suspension system on electric vehicles with In-wheel-motor[J]. Journal of System Simulation, 2014, 26(11): 2770-2778.
[12] 罗玉涛, 谭迪. 一种带新型内置悬置系统的电动轮结构研究[J]. 汽车工程, 2013, 35(12): 1105-1110.
Luo Yu-tao, Tan Di.A research on the hub-motor driven wheel structure with a novel built-in mounting system[J]. Automotive Engineering, 2013, 35(12): 1105-1110.
[13] 毛钰, 左曙光, 林福. 转矩波动下电动轮系统机电耦合振动特性[J]. 吉林大学学报:工学版, 2017 , 47(3):908-916.
Mao Yu, Zuo Shu-guang,Lin Fu.Electromechanical coupled vibration characteristics of electric wheel under torque ripple[J]. Journal of Jilin University (Engineering and Technology Edition), 2017,47(3):908-916.
[14] 左曙光,段向雷,吴旭东. 电动轮-悬架系统台架振动特性试验分析[J]. 振动与冲击, 2014, 33(12): 165-187.
Zuo Shu-guang, Duan Xiang-lei, Wu Xu-dong.Vibration test analysis of a electric wheel-suspension system on a test bed[J]. Journal of Vibration and Shock, 2014, 33(12): 165-187.
[15] 毛钰,左曙光,林福, 等. 转矩波动下电动轮纵向阶次振动特性试验及理论分析[J]. 同济大学学报:自然科学版, 2016, 44(11): 1735-1742.
Mao Yu, Zuo Shu-guang, Lin Fu, et al.Experimental and theoretical analysis for horizontal order vibration characteristics of electric wheel under torque ripple[J]. Journal of Tongji University(Natural Science), 2016, 44(11): 1735-1742.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!