吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 365-372.doi: 10.13229/j.cnki.jdxbgxb201702004

• • 上一篇    下一篇

应用满应力理论的轮胎轮廓设计

王国林, 孙砚田, 梁晨, 杨建, 周海超   

  1. 江苏大学 汽车与交通工程学院, 江苏 镇江 212013
  • 收稿日期:2015-09-15 出版日期:2017-03-20 发布日期:2017-03-20
  • 作者简介:王国林(1965-),男,教授,博士生导师.研究方向:汽车轮胎技术.E-mail:glwang@ujs.edu.cn
  • 基金资助:
    国家自然科学基金项目(51475062); 中国博士后科学基金项目(2014M551509).

Contour design of radial tire based on full stress theory

WANG Guo-lin, SUN Yan-tian, LIANG Chen, YANG Jian, ZHOU Hai-chao   

  1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
  • Received:2015-09-15 Online:2017-03-20 Published:2017-03-20

摘要: 为了在不影响轮胎寿命的前提下提升轮胎的滚动阻力性能,以某205/55R16型轿车子午线轮胎为研究对象,利用Abaqus和Fluent软件建立了轮胎自由滚动模型以及轮胎温度场模型,并通过温度测试和滚动阻力试验验证了仿真模型的可靠性。提出了应用满应力设计的轮胎轮廓优化设计理论,结合仿真模型,基于渐进优化算法针对轮胎外轮廓进行了优化。结果表明:应用满应力设计方法设计的轿车子午线轮胎滚动阻力显著下降;轮胎质量减轻;轮胎的应变能密度梯度模下降明显,轮胎寿命有所上升。证明了合理分配轮胎橡胶部件受力分布能够提升轮胎性能。

关键词: 车辆工程, 轮胎轮廓设计, 滚动阻力, 温度场, 疲劳寿命

Abstract: In order to improve the performance of rolling resistance and service life of Passenger Car Radial (PCR) tires, the PCR tire 205/55R16 is taken as the research object, and the finite element models of the tire free-rolling and the temperature field are established using Abaqus and Fluent software. The temperature and the rolling resistance are tested by a tire rolling r4esistance testing machine to validate the reliability of the simulation models. The contour theory is presented based on the full stress design theory. Combined with the simulation model, the outer contour of the radial tire is optimized using the evolutionary structural optimization, The results show that, compared with existing contour, the modified contour based on the full stress theory can be applied to reduce the weight of the tire, while decrease the rolling resistance. It is helpful to reduce the strain energy density gradient of the tier shoulder, which can improve the service life of the tier. In addition, the rational distribution of rubber parts can improve the performance of PCR tiers.

Key words: vehicle engineering, tire contour design, rolling resistance, temperature field, fatigue failure

中图分类号: 

  • U463
[1] 潘涛. 子午线轮胎轮廓设计理论的相关研究[D]. 广州:华南理工大学材料科学与工程学院,2011.
Pan Tao. Some theory study of contour design for radial tire[D]. Guangzhou: School of Materials Science and Engineering, South China University of Technology,2011.
[2] Yamagishi K, Togashiv M, Furuya S. A study on the contour of radial tire: rolling optimization theory(RCOT)[J].Tire Science and Technology, 1987, 15 (1): 3-29.
[3] Nakajima Y, Kamegawa T, Abe A. Theory of optimum tire contour and its application[J]. Tire Science and Technology, 1996, 24 (3): 184-203.
[4] 郑芬. 第四代轮胎设计理论“PSP-F”[J]. 世界汽车, 1990(1): 42-43.
Zheng Fen. The design concept of the forth generation tires for autos[J]. World Auto, 1990(1): 42-43.
[5] 梁晨. 子午线轮胎综合接地性能评价体系与方法研究[D]. 镇江:江苏大学汽车与交通工程学院,2013.
Liang Chen. Research on radial tire comprehensive ground performance evaluation system and method[D]. Zhenjiang: School of Automotive and Traffic Engineering, Jiangsu University, 2013.
[6] Bed T. An approach for hyperelastic model-building and parameters estimation: a review of constitutive models[J]. European Polymer Journal, 2014, 50: 97-108.
[7] 卢荡,郭孔辉. 轮胎侧偏力学特性的胎压影响分析及预测[J]. 吉林大学学报:工学版,2011,41(4): 915-920.
Lu Dang, Guo Kong-hui. Analysis and prediction of tire cornering property for different inflation pressure[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(4): 915-920.
[8] 黄梦溪. 直接用于轮胎设计的稳态滚动温度场及滚动阻力求解策略[D]. 合肥:中国科学技术大学工程材料学院, 2013.
Huang Meng-xi. The direct solving strategy of steady tire temperature field and rolling resistance for tire design[D]. Hefei:School of Engineering Science,University of Science and Technology of China, 2013.
[9] 曹益晨,何超. 天然橡胶布和钢板热特性差异的理论分析[J]. 光电技术应用, 2010, 25(3): 18-21.
Cao Yi-chen, He Chao. Theoretical analysis to thermal signature difference of rubber cloth and steel plate[J]. Electro-Optic Technology Application, 2010, 25 (3): 18-21.
[10] Latour B, Bouvier P, Harmand S. Convective heat transfer on a rotating disk with transverse air crossflow[J]. Journal of Heat Transfer, 2010, 133(2): 89-112.
[11] 王国林,裴紫嵘,周海超,等.考虑轮胎空气耦合传热的轮胎温度场分析[J].汽车技术,2012(9):15-18.
Wang Guo-lin, Pei Zi-rong, Zhou Hai-chao, et al. Analysis of tire temperature field by considering conjugated heat transfer of the tire with airflow[J]. Automobile Technology, 2012 (9): 15-18.
[12] Cho J R, Lee H W, Jeong W B, et al. Numerical estimation of rolling resistance and temperature distribution of 3D periodic patterned tire[J]. International Journal of Solids and Structures,2013(50): 86-96.
[13] Ahrari A, Atai A, Deb K. Simultaneous topology, shape and size optimization of truss structures by fully stressed design based on evolution strategy[J]. Engineering Optimization, 2015, 47(8): 1063-1084.
[14] 荣见华,谢亿民,姜节胜,等. 渐进结构优化设计的现状与进展[J]. 长沙交通学院学报,2001,17(3):16-23.
Rong Jian-hua,Xie Yi-min,Jiang Jie-sheng,et al.Present situation and development of evolutionary structural optimization method[J].Journal of Changsha Communicatioins Universtiy,2001,17(3):16-23.
[15] 蔡习舟. 轮胎轻量化设计对轮胎滚动阻力的影响[J] . 轮胎工业,2013,33(2):82-85.
Cai Xi-zhou. Influence of lightweight design on the tire rolling resistance[J]. Tire Industry, 2013, 33(2): 82-85.
[16] Previati G, Kaliske M. Crack propagation in pneumatic tires: continuum mechanics and fracture mechanics approaches[J]. International Journal of Fatigue, 2012 (37): 69-78.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[14] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[15] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!