吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 804-810.doi: 10.13229/j.cnki.jdxbgxb201703016
彭玮, 李国祥, 闫伟
PENG Wei, LI Guo-xiang, YAN Wei
摘要: 在发动机散热器的数值计算中,需要对壁面函数进行改进。为了构造一种适用于发动机散热器的壁面函数,对标准壁面函数(SWF)进行混合处理并引入压力梯度影响系数,构造了一种改进的混合型壁面函数(IBWF)。基于一款管带式散热器,在Fluent中应用IBWF及不同近壁处理方法进行了数值模拟,并在RWT800散热器性能试验风洞中进行了试验验证。结果表明:与SWF相比,IBWF对压降和温差的预测误差分别减小了9.1%和14.5%,并节省了一半以上的求解时间,为散热器数值计算提供了一种更经济、可靠的近壁处理方法。
中图分类号:
[1] 王飞,秦四成,赵克利. 装载机管片式散热器流动与传热特性数值分析[J]. 吉林大学学报:工学版,2009,39(增刊1):196-199. Wang Fei, Qin Si-cheng, Zhao Ke-li.Numerical simulation study on wheel loader tube-fin radiator air flow and heat transfer character[J]. Journal of Jilin University(Engineering and Technology Edition),2009,39(Sup.1):196-199. [2] Jacobi A M, Shah R K. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms[J]. Heat Transfer En-gineering,1998,19(4),29-41. [3] 郭健忠,徐敏,张光德,等. 汽车散热器的性能分析及翅片结构优化[J]. 科学技术与工程,2016,16(26):58-64. Guo Jian-zhong, Xu Min, Zhang Guang-de, et al. Performance analysis and optimization of automo-bile radiator fin structure[J]. Science Technology and Engineering,2016,16(26):58-64. [4] 王福军. 计算流体动力学分析[M]. 北京:清华大学出版社,2004. [5] Defraeye T, Blocken B, Carmeliet J. CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer[J]. Inter-national Journal of Heat and Mass Transfer,2010,53(1):297-308. [6] 吴光强,陈凯,王立军. 液力变矩器数值模拟中近壁处理方法影响的研究[J]. 汽车工程,2013,35(10): 878-881. Wu Guang-qiang, Chen Kai, Wang Li-jun. A study on the effects of near-wall treatment schemes on numerical simulation of torque converter[J]. Automotive Engineering,2013,35(10):878-881. [7] 彭玮,李国祥,闫伟. 工程机械用散热器数值模拟中近壁处理方法影响分析[J]. 内燃机工程,2015,36(1):100-105. Peng Wei, Li Guo-xiang, Yan Wei. Analysis of the effects of near-wall treatments on numerical simulation of construction machinery radiators[J]. Chinese Internal Combustion Engine Engineering,2015,36(1):100-105. [8] Kader B A. Temperature and concentration profiles in fully turbulent boundary layers[J]. International Journal of Heat and Mass Transfer,1981,24(9):1541-1544. [9] Shih T H, Povinelli L A, Liu N S. Application of generalized wall function for complex turbulent flows[J]. Journal of Turbulence,2003,4(1):1-16. [10] Utyuzhnikov S V. Generalized wall functions and their application for simulation of turbulent flows[J]. International Journal for Numerical Methods in Fluids,2005,47(10/11):1323-1328. [11] Defraeye T, Blocken B, Carmeliet J. An adjusted temperature wall function for turbulent forced convective heat transfer for bluff bodies in the atmospheric boundary layer[J]. Building and Environ-ment,2011,46(11):2130-2141. [12] 窦国仁. 明渠和管道中紊流各流区的统一规律[J]. 水利水运工程学报,1980(1):1-12. Dou Guo-ren. Generalized laws of turbulent flow in open channels and pipes for various regions[J]. Hydro-Science and Engineering, 1980(1):1-12. [13] Zhang Teng-fei, Zhou Hong-biao, Wang Shu-guang. An adjustment to the standard temperature wall function for CFD modeling of indoor convective heat transfer[J]. Building and Environment,2013,68(10):159-169. [14] 章梓雄,董曾南. 粘性流体力学[M]. 第2版. 北京:清华大学出版社, 2011. [15] Shah R K, Heikal M R, Thonon B, et al. Progress in the numerical analysis of compact heat exchanger surfaces[J]. Advances in Heat Transfer,2001,34:363-443. [16] Leontev A I, Fomichev V M. Heat transfer and drag in a turbulent boundary layer with a pressure gradient[J]. Journal of Engineering Physics and Thermophysics,1983,45:5-11. [17] ANSYS, Inc. ANSYS fluent theory guide[DB/OL].[2015-11-10]. https:∥zh.scribd.com/doc/140163341/Ansys-Fluent-14-0-Theory-Guide. [18] Launder B E, Spalding D B. The Numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289. [19] Kestin J, Richardson P D.Heat transfer across turbulent, incompressible boundary layers[J]. International Journal of Heat & Mass Transfer,1963,6(2):147-189. [20] White F M, Christoph G H.A simple new analysis of compressible turbulent skin friction under arbitrary conditions[R].Kingston:University of Rhode Island, 1971. [21] JB/T8577-2005. 内燃机水散热器技术条件[S]. [22] 刘敏珊,杨帆,董其伍,等.流体横掠管束模拟中壁面函数影响研究[J]. 热能动力工程,2010,25(5):497-500. Liu Min-shan, Yang Fan, Dong Qi-wu, et al. Study of the influence of wall surface functions in simulating a fluid laterally sweeping a tube bundle[J]. Journal of Engineering for Thermal Energy and Power,2010,25(5):497-500. [23] 崔洪江,宁宝焕,刘俊杰,等. 机车散热器空气侧CFD数值模拟与仿真研究[J]. 内燃机车,2011(8):22-26. Cui Hong-jiang, Ning Bao-huan, Liu Jun-jie, et al. CFD numerical simulation research on locomotive radiator cooling air side[J]. Diesel Locomotives,2011(8):22-26. |
[1] | 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761. |
[2] | 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798. |
[3] | 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417. |
[4] | 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443. |
[5] | 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474. |
[6] | 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482. |
[7] | 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062. |
[8] | 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727-734. |
[9] | 席雷, 徐亮, 高建民, 赵振, 王明森. 厚壁矩形带肋通道内蒸汽流动及传热特性[J]. 吉林大学学报(工学版), 2018, 48(3): 752-759. |
[10] | 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834. |
[11] | 李龙, 张幽彤, 左正兴. 变负载控制在自由活塞内燃发电机的缸压控制中的应用[J]. 吉林大学学报(工学版), 2018, 48(2): 473-479. |
[12] | 田径, 刘忠长, 刘金山, 董春晓, 钟铭, 杜文畅. 基于燃烧边界参数响应曲面设计的柴油机性能优化[J]. 吉林大学学报(工学版), 2018, 48(1): 159-165. |
[13] | 卫海桥, 裴自刚, 冯登全, 潘家营, 潘明章. 压电喷油器多次喷射对GDI汽油机颗粒物排放的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 166-173. |
[14] | 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228. |
[15] | 李志军, 何丽, 姜瑞, 申博玺, 孔祥金, 刘世宇. 柴油机微粒捕集器灰分分布对其压降的影响评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1760-1766. |
|