吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 804-810.doi: 10.13229/j.cnki.jdxbgxb201703016

• • 上一篇    下一篇

适用于发动机散热器的壁面函数改进

彭玮, 李国祥, 闫伟   

  1. 山东大学 能源与动力工程学院,济南 250061
  • 出版日期:2017-05-20 发布日期:2017-05-20
  • 通讯作者: 李国祥(1965-),男,教授,博士生导师.研究方向:内燃机可靠性与排放控制技术,汽车混合动力系统.E-mail:liguox@sdu.edu.cn
  • 作者简介:彭玮(1988-),女,博士研究生.研究方向:车辆热管理.E-mail:peng_wei@mail.sdu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFD0700700); 山东省农机装备研发创新计划项目(2016YF003)

Improvement in wall functions for engine radiators

PENG Wei, LI Guo-xiang, YAN Wei   

  1. School of Energy and Power Engineering, Shandong University, Ji'nan 250061, China
  • Online:2017-05-20 Published:2017-05-20

摘要: 在发动机散热器的数值计算中,需要对壁面函数进行改进。为了构造一种适用于发动机散热器的壁面函数,对标准壁面函数(SWF)进行混合处理并引入压力梯度影响系数,构造了一种改进的混合型壁面函数(IBWF)。基于一款管带式散热器,在Fluent中应用IBWF及不同近壁处理方法进行了数值模拟,并在RWT800散热器性能试验风洞中进行了试验验证。结果表明:与SWF相比,IBWF对压降和温差的预测误差分别减小了9.1%和14.5%,并节省了一半以上的求解时间,为散热器数值计算提供了一种更经济、可靠的近壁处理方法。

关键词: 动力机械工程, 壁面函数, 散热器, 数值模拟

Abstract: The accuracy of wall functions needs improvement for near-wall flow in engine radiators. In order to make wall functions suitable for engine radiators, Improved Blended Wall Functions (IBWFs) were customized by blending the Standard Wall Functions (SWFs) and introducing influence coefficients of pressure gradients. Numerical simulations were conducted in Fluent. In the simulations, different near-wall treatments including IBWFs were applied on a tube-and-corrugated- fin type radiator. Experimental verifications were carried out in RWT800 radiator wind tunnel . The results indicate that the IBWFs save more than half of computational time of SWFs, meanwhile, the deviations of pressure drop and temperature differences between inlet and outlet decrease 9.1% and 14.5% respectively. The IBWFs provide a more efficient and reliable near-wall treatment for radiator numerical simulations.

Key words: power mechanical engineering, wall functions, radiator, numerical simulation

中图分类号: 

  • TK422
[1] 王飞,秦四成,赵克利. 装载机管片式散热器流动与传热特性数值分析[J]. 吉林大学学报:工学版,2009,39(增刊1):196-199.
Wang Fei, Qin Si-cheng, Zhao Ke-li.Numerical simulation study on wheel loader tube-fin radiator air flow and heat transfer character[J]. Journal of Jilin University(Engineering and Technology Edition),2009,39(Sup.1):196-199.
[2] Jacobi A M, Shah R K. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms[J]. Heat Transfer En-gineering,1998,19(4),29-41.
[3] 郭健忠,徐敏,张光德,等. 汽车散热器的性能分析及翅片结构优化[J]. 科学技术与工程,2016,16(26):58-64.
Guo Jian-zhong, Xu Min, Zhang Guang-de, et al. Performance analysis and optimization of automo-bile radiator fin structure[J]. Science Technology and Engineering,2016,16(26):58-64.
[4] 王福军. 计算流体动力学分析[M]. 北京:清华大学出版社,2004.
[5] Defraeye T, Blocken B, Carmeliet J. CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer[J]. Inter-national Journal of Heat and Mass Transfer,2010,53(1):297-308.
[6] 吴光强,陈凯,王立军. 液力变矩器数值模拟中近壁处理方法影响的研究[J]. 汽车工程,2013,35(10): 878-881.
Wu Guang-qiang, Chen Kai, Wang Li-jun. A study on the effects of near-wall treatment schemes on numerical simulation of torque converter[J]. Automotive Engineering,2013,35(10):878-881.
[7] 彭玮,李国祥,闫伟. 工程机械用散热器数值模拟中近壁处理方法影响分析[J]. 内燃机工程,2015,36(1):100-105.
Peng Wei, Li Guo-xiang, Yan Wei. Analysis of the effects of near-wall treatments on numerical simulation of construction machinery radiators[J]. Chinese Internal Combustion Engine Engineering,2015,36(1):100-105.
[8] Kader B A. Temperature and concentration profiles in fully turbulent boundary layers[J]. International Journal of Heat and Mass Transfer,1981,24(9):1541-1544.
[9] Shih T H, Povinelli L A, Liu N S. Application of generalized wall function for complex turbulent flows[J]. Journal of Turbulence,2003,4(1):1-16.
[10] Utyuzhnikov S V. Generalized wall functions and their application for simulation of turbulent flows[J]. International Journal for Numerical Methods in Fluids,2005,47(10/11):1323-1328.
[11] Defraeye T, Blocken B, Carmeliet J. An adjusted temperature wall function for turbulent forced convective heat transfer for bluff bodies in the atmospheric boundary layer[J]. Building and Environ-ment,2011,46(11):2130-2141.
[12] 窦国仁. 明渠和管道中紊流各流区的统一规律[J]. 水利水运工程学报,1980(1):1-12.
Dou Guo-ren. Generalized laws of turbulent flow in open channels and pipes for various regions[J]. Hydro-Science and Engineering, 1980(1):1-12.
[13] Zhang Teng-fei, Zhou Hong-biao, Wang Shu-guang. An adjustment to the standard temperature wall function for CFD modeling of indoor convective heat transfer[J]. Building and Environment,2013,68(10):159-169.
[14] 章梓雄,董曾南. 粘性流体力学[M]. 第2版. 北京:清华大学出版社, 2011.
[15] Shah R K, Heikal M R, Thonon B, et al. Progress in the numerical analysis of compact heat exchanger surfaces[J]. Advances in Heat Transfer,2001,34:363-443.
[16] Leontev A I, Fomichev V M. Heat transfer and drag in a turbulent boundary layer with a pressure gradient[J]. Journal of Engineering Physics and Thermophysics,1983,45:5-11.
[17] ANSYS, Inc. ANSYS fluent theory guide[DB/OL].[2015-11-10]. https:∥zh.scribd.com/doc/140163341/Ansys-Fluent-14-0-Theory-Guide.
[18] Launder B E, Spalding D B. The Numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289.
[19] Kestin J, Richardson P D.Heat transfer across turbulent, incompressible boundary layers[J]. International Journal of Heat & Mass Transfer,1963,6(2):147-189.
[20] White F M, Christoph G H.A simple new analysis of compressible turbulent skin friction under arbitrary conditions[R].Kingston:University of Rhode Island, 1971.
[21] JB/T8577-2005. 内燃机水散热器技术条件[S].
[22] 刘敏珊,杨帆,董其伍,等.流体横掠管束模拟中壁面函数影响研究[J]. 热能动力工程,2010,25(5):497-500.
Liu Min-shan, Yang Fan, Dong Qi-wu, et al. Study of the influence of wall surface functions in simulating a fluid laterally sweeping a tube bundle[J]. Journal of Engineering for Thermal Energy and Power,2010,25(5):497-500.
[23] 崔洪江,宁宝焕,刘俊杰,等. 机车散热器空气侧CFD数值模拟与仿真研究[J]. 内燃机车,2011(8):22-26.
Cui Hong-jiang, Ning Bao-huan, Liu Jun-jie, et al. CFD numerical simulation research on locomotive radiator cooling air side[J]. Diesel Locomotives,2011(8):22-26.
[1] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[2] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[3] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[4] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[5] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[6] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
[7] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[8] 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
[9] 席雷, 徐亮, 高建民, 赵振, 王明森. 厚壁矩形带肋通道内蒸汽流动及传热特性[J]. 吉林大学学报(工学版), 2018, 48(3): 752-759.
[10] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[11] 李龙, 张幽彤, 左正兴. 变负载控制在自由活塞内燃发电机的缸压控制中的应用[J]. 吉林大学学报(工学版), 2018, 48(2): 473-479.
[12] 田径, 刘忠长, 刘金山, 董春晓, 钟铭, 杜文畅. 基于燃烧边界参数响应曲面设计的柴油机性能优化[J]. 吉林大学学报(工学版), 2018, 48(1): 159-165.
[13] 卫海桥, 裴自刚, 冯登全, 潘家营, 潘明章. 压电喷油器多次喷射对GDI汽油机颗粒物排放的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 166-173.
[14] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[15] 李志军, 何丽, 姜瑞, 申博玺, 孔祥金, 刘世宇. 柴油机微粒捕集器灰分分布对其压降的影响评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1760-1766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张天时, 宋东鉴, 高青, 王国华, 闫振敏, 宋薇. 电动汽车动力电池液体冷却系统构建及其工作过程仿真[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[2] 刘汉光, 王国强, 孟东阁, 赵寰宇. 液压挖掘机履带行走装置的合理预张紧力[J]. 吉林大学学报(工学版), 2018, 48(2): 486 -491 .
[3] 李明达, 隗海林, 门玉琢, 包翠竹. 复杂底部结构下的重型载货汽车气动阻力[J]. 吉林大学学报(工学版), 2017, 47(3): 731 -736 .
[4] 董超, 成凯, 胡康乐, 胡文强. 全地形铰接式履带车辆俯仰运动性能[J]. 吉林大学学报(工学版), 2017, 47(3): 827 -836 .