吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 1147-1152.doi: 10.13229/j.cnki.jdxbgxb20170501

• • 上一篇    下一篇

基于灰色关联的DP1180/DP590异质点焊接头工艺参数优化

邱小明1, 王银雪1, 姚汉伟2, 房雪晴3, 邢飞1,4   

  1. 1.吉林大学 材料科学与工程学院,长春 130022;
    2.长春三友汽车部件制造有限公司,长春 130033;
    3.天津大学 材料科学与工程学院,天津 300350;
    4.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2017-04-11 出版日期:2018-07-01 发布日期:2018-07-01
  • 通讯作者: 邢飞(1987-),女,在站博士后.研究方向:先进高强钢连接.E-mail:xingfei@jlu.edu.cn
  • 作者简介:邱小明(1964-),男,教授,博士生导师.研究方向:先进高强钢连接.E-mail:18204318903@163.com
  • 基金资助:
    吉林省科技发展计划“双十工程”重大科技成果转化项目(20140301007GX).

Multi-objective optimization of resistance spot welding parameters for DP1180/DP590 using grey relational analysis based Taguchi

QIU Xiao-ming1, WANG Yin-xue1, YAO Han-wei2, FANG Xue-qing3, XING Fei1,4   

  1. 1.College of Materials Science and Engineering, Jilin University, Changchun 130022, China;
    2.Sanyou Automobile Parts Manufacturing Company Limited, Changchun 130033, China;
    3.College of Materials Science and Engineering, Tianjin University, Tianjin 300350,China;
    4.State Key Laboratory of Automotive Simulation and Cortrol,Jilin University, Changchun 130022,China
  • Received:2017-04-11 Online:2018-07-01 Published:2018-07-01

摘要: 以正交试验为基础,利用灰色关联度研究了不等厚异质点焊接头的多目标优化,通过极差分析得到以熔核直径、压痕率和最大拉剪力为衡量因子的最优参数,通过方差分析研究了各点焊参数对衡量因子的影响程度。结果表明:1.2 mm的DP1180和1.5 mm的DP590异质点焊接头最优工艺参数是:焊接电流为9.5 kA、焊接时间为22 cycles、电极压力为8.48 kN,此时点焊接头的熔核直径为6.76 mm、压痕率为17.70%、最大拉剪力为19.49 kN,在保证点焊接头强度的同时降低了压痕率。点焊参数对衡量因子影响的主次顺序为焊接电流、焊接时间和电极压力。

关键词: 材料合成与加工工艺, 灰色关联分析, 电阻点焊, 超高强钢, 多目标优化, 不等厚材料

Abstract: Based on Taguchi orthogonal test, the multi-objective optimization problem of dissimilar thickness DP1180/DP590 resistance spot welding was studied using grey relation analysis. The optimum parameters were derived by considering the responses such as nugget diameter, indentation rate and lower peak load by difference analysis. Analysis of variance (ANOVA) was used to analyze the effects of different parameters on the responses. Based on the results, welding current 9.5 kA, welding time 22 cycles and electrode force 8.48 kN evolved as the optimized parameters. Under the optimized parameters, the nugget diameter, indentation rate and peak load of the spot joint are 6.67 mm, 17.70% and 19.49 kN, respectively. The joint in with the optimized parameters ensures the strength and reduces the indentation rate. The influence degrees of the spot welding parameters on the measuring factors are in the order: welding current, welding time and electrode force.

Key words: materials synthesis and processing technology, gray relational analysis, resistance spot welding, ultra-high strength steel, multi-objective optimization, dissimilar thickness materials

中图分类号: 

  • TG453.9
[1] Schimek M, Springer A, Kaierle S, et al.Laser-welded dissimilar steel-aluminum seams for automotive lightweight construction[J]. Physics Procedia, 2012, 39:43-50.
[2] Zhang W H, Sun D Q, Han L J, et al.Interfacial microstructure and mechanical property of resistance spot welded joint of high strength steel and aluminum alloy with 4047 AlSi12 interlayer[J]. Material and Design, 2014,57(5):186-194.
[3] Park K, Nishiyama M, Nakada N, et al.Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel[J]. Materials Science and Engineering A, 2014,604(7):135-141.
[4] Ghassemi-armaki H, Maab R, Bhat S P, et al. Deformation response of ferrite and martensite in a dual-phase steel[J]. Acta Materialia, 2014,62(1):197-211.
[5] Hernandez V H B, Kuntz M L, Khan M I, et al. Influence of microstructure and weld size on the mechanical behavior of dissimilar AHSS resistance spot welds[J]. Science and Technology of Welding and Joining, 2008,13(8):769-776.
[6] Pouranvari M, Marashi S P H, Mousavizadeh S M. Failure mode transition and mechanical properties of similar and dissimilar resistance spot welds of DP600 and low carbon steels[J]. Science and Technology of Welding and Joining, 2013,15(7):625-631.
[7] Safanama D S, Marashi S P H, Pouranvari M. Similar and dissimilar resistance spot welding of martensite advanced high strength steel and low carbon steel: metallurgical characteristics and failure mode transition[J]. Science and Technology of Welding and Joining, 2012,17(4):288-294.
[8] Pouranvari M, Marashi S P H. Similar and dissimilar RSW of low carbon and austenitic stainless steels: effect of weld microstructure and hardness profile on failure mode[J]. Materials Science and Technology, 2013,25(12):1411-1416.
[9] Ghosh N, Pal P K, Nandi G.Parametric optimization of MIG welding on 316L austenitic stainless steel by grey-based Taguchi method[J]. Procedia Technology, 2016,25:1038-1048.
[10] Tarng Y S, Juang S C, Chang C H.The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing[J]. Journal of Materials Processing Technology, 2002,128(1-3):1-6.
[11] Tamrin K F, Nukman Y, Sheikh N A, et al.Determination of optimum parameters using grey relational analysis for multi-performance characteristics in CO2 laser joining of dissimilar materials[J]. Optics and Lasers in Engineering,2014,57(57):40-47.
[12] Plaine A H, Gonzaiez A R, Suhuddin U F H, et al. The optimization of friction spot welding process parameters in AA6181-T4 and Ti6Al4V dissimilar joints[J]. Materials &Design, 2015,83:36-41.
[13] Zhang H Q, Qiu X M, Bai Y, et al.Resistance spot welding macro characteristics of the dissimilar thickness dual phase steel[J]. Materials and Design, 2014,63(21):151-158.
[14] Wan X D, Wang Y X, Zhao D W.Grey relational and neural network approach for multi-objective optimization in small scale resistance spot welding of titanium alloy[J]. Journal of Mechanical Science and Technology, 2016,30(6):2675-2682.
[15] JIS Z3139-1978. Specimen dimensions and procedure for cross tension testing resistance spot and embossed projection welded joints[S].
[16] Pouranvari M, Marashi S P H. Factors affecting mechanical properties of resistance spot welds[J]. Material Science and Technology, 2010,26(9):1137-1144.
[17] 何为, 薛卫东, 唐斌. 优化试验设计方法及数据分析[M]. 北京: 化学工业出版社, 2012.
[1] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[2] 胡志清, 颜庭旭, 李洪杰, 吕振华, 廖伟, 刘庚. 深冷处理对铝合金薄板冲剪成形性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1524-1530.
[3] 夏利红, 邓兆祥. 电子机械制动执行器的整体最优匹配设计[J]. 吉林大学学报(工学版), 2018, 48(4): 998-1007.
[4] 庄蔚敏, 赵文增, 解东旋, 李兵. 超高强钢/铝合金热铆连接接头性能[J]. 吉林大学学报(工学版), 2018, 48(4): 1016-1022.
[5] 吉野辰萌, 樊璐璐, 闫磊, 徐涛, 林烨, 郭桂凯. 基于MBNWS算法的假人胸部结构多目标优化设计[J]. 吉林大学学报(工学版), 2018, 48(4): 1133-1139.
[6] 陈俊甫, 管志平, 杨昌海, 牛晓玲, 姜振涛, 宋玉泉. 金属棒试样拉伸和扭转试验应变范围和力学特性对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
[7] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[8] 刘子武, 李剑峰. 叶片材料FV520B再制造熔覆层冲蚀损伤行为及评价[J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[9] 王登峰, 张帅, 汪勇, 陈辉. 基于疲劳和13°冲击性能的组装式车轮优化设计[J]. 吉林大学学报(工学版), 2018, 48(1): 44-56.
[10] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[11] 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[12] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[13] 王辉, 周杰, 熊煜, 陶亚平, 向荣. 基于逆向工程的复杂曲面冲压件回弹补偿[J]. 吉林大学学报(工学版), 2017, 47(6): 1842-1847.
[14] 王春生, 邹丽, 杨鑫华. 基于邻域粗糙集的铝合金焊接接头疲劳寿命影响因素分析[J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
[15] 邢海燕, 葛桦, 李思岐, 杨文光, 孙晓军. 基于模糊隶属度最大似然估计的焊缝隐性缺陷磁记忆信号识别[J]. 吉林大学学报(工学版), 2017, 47(6): 1854-1860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[5] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[6] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[7] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[8] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[9] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[10] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .