吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 44-56.doi: 10.13229/j.cnki.jdxbgxb20170036

• 论文 • 上一篇    下一篇

基于疲劳和13°冲击性能的组装式车轮优化设计

王登峰, 张帅, 汪勇, 陈辉   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2017-01-11 出版日期:2018-02-26 发布日期:2018-02-26
  • 作者简介:王登峰(1963-),男,教授,博士生导师.研究方向:汽车动量化设计与应用.E-mail: caewdf@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51475201)

Optimization design of assembled wheel based on performance of fatigue and 13° impact

WANG Deng-feng, ZHANG Shuai, WANG Yong, CHEN Hui   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022,China
  • Received:2017-01-11 Online:2018-02-26 Published:2018-02-26

摘要: 为了研究车轮的13°冲击性能,提出了一种基于疲劳和13°冲击性能的车轮结构设计和优化方法。以16×612J型车轮为研究对象,基于动态弯曲疲劳试验和动态径向疲劳试验对车轮进行了联合拓扑优化,设计了一个镁合金轮辋和铝合金轮辐的组装式车轮结构。建立了组装式车轮13°冲击试验的有限元模型,基于不同应变率下AZ91D镁合金和6061铝合金的材料本构模型分别分析了冲锤正对辐条和正对窗口冲击两种工况下车轮的应变,并研究了13°冲击性能与车轮结构之间的关系。利用网格变形技术建立了组装式车轮在两种工况下的参数化模型并定义了12个设计变量,使用Isight软件平台集成DEP-MeshWorks和LS-DYNA软件建立车轮多目标优化模型,利用最优拉丁超立方和Box-Behnken设计拟合了径向基RBF网络近似模型并验证了近似模型的精度。利用所建立的近似模型,以车轮质量和冲锤正对辐条冲击时轮辐的最大应变最小为目标,其余应变为约束,采用第二代非劣排序遗传算法(NSGA-Ⅱ)对车轮进行了多目标优化设计。得到了Pareto前沿,综合考虑了车轮13°冲击性能条件下,选取了一个妥协解作为优化设计结果。结果表明:在满足车轮各项13°冲击性能要求的条件下,优化得到的组装式车轮与同型铸造铝合金车轮相比减重30.65%。

关键词: 车辆工程, 组装式车轮, 联合拓扑优化, 13°, 冲击, 多目标优化

Abstract: In order to study the 13° impact performance of wheel, a wheel structure design and optimization method were proposed based on fatigue and 13° impact performance. Taking a 16×6 12 J type wheel as the research object, united topology optimization was performed based on dynamic bending fatigue test and dynamic radial fatigue test, and an assembled wheel with a magnesium alloy rim and an aluminum alloy disc was designed. Finite element models of the assembled wheel for 13° impact test were established, and the strain of the wheel under two conditions, where the hammer was facing the spoke and the window, was analyzed, using the material constitutive model of AZ91D magnesium alloy and 6061 aluminum alloy at different strain rates. The relationship between 13° impact performance and wheel structure was studied. The parametric model of the assembled wheel under two conditions was established with twelve design variables defined by using the mesh morphing technology. Multi-objective Optimization (MoO) model was built using Isight software platform where DEP-MeshWorks and LS-DYNA software were integrated. The Optimal Latin Hypercube design and Box-Behnken design were used to fit the RBF network surrogate model and to validate the precision of the surrogate model. Using the established surrogate model, Non-dominated Sorting Genetic Algorithm-Ⅱ (NSGA-Ⅱ) was adopted to perform the MoO of the wheel, in which the wheel mass and the maximum strain when the hammer was facing the spoke were taken as the objectives and the other strain as the constraint. The Pareto frontier was obtained, and a compromise solution was selected as the optimal design result taking a comprehensive consideration of 13° impact performance of the wheel. The results show that under the condition of satisfying the 13° impact performance of the wheel, the weight of the optimized assembled wheel is 30.65% less than that of the same type cast aluminum alloy wheel.

Key words: vehicle engineering, assembled wheel, united topology optimization, 13°impact, multi-objective optimization

中图分类号: 

  • U463.34
[1] Hirano A.Study on wheel stiffness considering balance between driving stability and weight[C]∥SAE Paper,2015-01-1755
[2] Shang D, Liu X, Shan Y, et al.Research on the stamping residual stress of steel wheel disc and its effect on the fatigue life of wheel[J]. International Journal of Fatigue, 2016, 93: 173-183.
[3] Ballo F, Frizzi R, Mastinu G, et al.Lightweight design and construction of aluminum wheels[C]∥SAE Paper, 2016-01-1575.
[4] Oery T, Sankaran R T, Nesarikar A S.Simulation and test correlation of wheel radial fatigue test[C]∥SAE Paper, 2013-01-1198.
[5] Bendsøe M P, Kikuchi N.Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224.
[6] Jeong S H, Yoon G H, Takezawa A, et al.Development of a novel phase-field method for local stress-based shape and topology optimization[J]. Computers and Structures, 2014, 132(1): 84-98.
[7] Liu J, Ma Y.A survey of manufacturing oriented topology optimization methods[J]. Advances in Engineering Software, 2016, 100: 161-175.
[8] Deaton J D, Grandhi R V.A survey of structural and multidisciplinary continuum topology optimization: post 2000[J]. Structural and Multidisciplinary Optimization, 2014, 49(1): 1-38.
[9] Sangree R, Carstensen J V, Gaynor A T, et al.Topology optimization as a teaching tool for undergraduate education in structural engineering[C]∥Structural Engineering Proceedings of the Structures Congress, Portland, OR,2015: 2632-2642.
[10] Zhang Z J, Jia H L, Sun J Y, et al. Application of topological optimization on aluminum alloy automobile wheel designing [J].Advanced Materials Research, 2012,562-564: 705-708.
[11] Hu J H,Liu X X, Sun H X, et al.Development and application of light-weight design of the aluminum alloy wheel[C]∥Applied Mechanics and Materials Trans Tech Publications, 2013, 310: 253-257.
[12] Xiao D, Zhang H, Liu X, et al.Novel steel wheel design based on multi-objective topology optimization[J]. Journal of Mechanical Science and Technology, 2014, 28(3): 1007-1016.
[13] 臧孟炎, 秦滔. 铝合金车轮 13°冲击试验仿真分析[J]. 机械工程学报, 2010, 46(2): 83-87.
Zang Meng-yan, Qin Tao.Simulation analysis of car A-alloy wheel 13° impact test[J]. Journal of Mechanical Engineering, 2010, 46(2): 83-87.
[14] 尹冀, 朱平, 章斯亮. 考虑应变率效应的钢制车轮冲击仿真与试验[J]. 上海交通大学学报, 2013, 47(6): 967-971.
Yin Ji, Zhu Ping, Zhang Si-liang.Simulation and experimental study of steel wheel impact test considering strain rate effect[J]. Journal of Shanghai Jiaotong University, 2013, 47(6): 967-971.
[15] Chang C L, Yang S H.Simulation of wheel impact test using finite element method[J]. Engineering Failure Analysis, 2009, 16(5): 1711-1719.
[16] 郑玉卿, 刘建峰. 基于Abaqus 显式算法的铸铝车轮碰撞模拟[J]. 汽车工程, 2011, 33(2):152-155.
Zheng Yu-qing, Liu Jian-feng.Impact simulation of casting aluminum wheel using Abaqus/explicit[J]. Automotive Engineering, 2011, 33(2):152-155.
[17] Vinothkumar S, Srinivasan S, Nesarikar A K.Simulation and test correlation of wheel impact test[C]∥SAE Paper, 2011-28-0129.
[18] 闫胜昝, 童水光, 朱训明. 轮胎充气压力对车轮应力分布影响的数值模拟[J]. 浙江大学学报:工学版, 2009, 43(3): 565-569.
Yan Sheng-zan, Tong Shui-guang, Zhu Xun-ming.Numerical simulation on influence of tire pressure to stress distribution in wheel[J]. Journal of Zhejiang University (Engineering Science), 2009, 43(3): 565-569.
[19] Tsai G C, Huang K Y.13° impact test analysis of aluminum alloy wheel[C]∥Advanced Materials Research, Trans Tech Publications, 2013, 631: 925-931.
[20] 张响. 铝合金车轮数字化仿真及工艺优化[D]. 浙江: 浙江大学材料与化学工程学院, 2008.
Zhang Xiang.Aluminum wheel digital simulation and process optimization [D].Zhejiang: College of Materials and Chemical Engineering,Zhejiang University, 2008.
[21] Chauhan M R, Kotwal G, Majge A.Numerical simulation of tire and wheel assembly impact test using finite element method[C]∥SAE Paper, 2015-26-0186.
[22] 王宁, 杜林秀, 吴迪, 等. 超级钢汽车车轮强度有限元分析[J]. 东北大学学报 :自然科学版, 2006, 27(7): 779-781.
Wang Ning, Du Lin-xiu, Wu Di, et al.FEM analysis of strength of automotive wheels made from ultra-fine grain steel[J]. Journal of Northeastern University (Natural science), 2006, 27(7): 779-781.
[23] 畅世为, 张维刚. 复合材料车轮冲击试验仿真分析[J]. 汽车工程, 2010, 32(1): 65-68.
Chang Shi-wei, Zhang Wei-gang.A simulation analysis on the impact test of composite wheel[J]. Automotive Engineering, 2010, 32(1): 65-68.
[24] Tiwari D, Arora J, Khanger R.Study of parameters affecting the impact performance of an alloy wheel and noble approach followed to improve the impact performance[C]∥SAE Paper, 2015-01-1514.
[25] Shang R, Altenhof W, Hu H, et al.Kinetic energy compensation of tire absence in numerical modeling of wheel impact testing[C]∥SAE Paper, 2005-01-1825.
[26] Stearns J,Srivatsan T S, Prakash A, et al.Modeling the mechanical response of an aluminum alloy automotive rim[J]. Materials Science and Engineering A, 2004, 366(2): 262-268.
[27] Sah S K, Bawase M A, Saraf M R.Light-weight materials and their automotive applications[C]∥SAE Paper, 2014-28-0025.
[28] Ballo F, Mastinu G, Gobbi M.Lightweight design of a racing motorcycle wheel[C]∥SAE Paper, 2016-01-1576.
[29] Collet M,Bruggi M, Duysinx P.Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance[J]. Structural and Multidisciplinary Optimization, 2016,55(3): 1-17.
[30] Bruggi M, Duysinx P.Topology optimization for minimum weight with compliance and stress constraints[J]. Structural and Multidisciplinary Optimization, 2012, 46(3): 369-384.
[31] Rozvany G I N. On symmetry and non-uniqueness in exact topology optimization[J]. Structural and Multidisciplinary Optimization, 2011, 43(3): 297-317.
[32] 李兵. 计及复杂胎面花纹的子午线轮胎结构有限元分析[D]. 合肥: 中国科学技术大学工程科学学院, 2008.
Li Bing.Finite element structural analysis for radial tires with complex tread patterns considered [D]. Hefei: School of Engineering Science, University of Science and Technology of China, 2008.
[33] Yi G, Kim N H.Identifying Boundaries of Topology Optimization Results using basic Parametric Features[M]. New York: Springer, 2016: 1-14.
[34] Hahn Y, Cofer J I.Study of parametric and non-parametric optimization of a rotor-bearing system[C]∥Turbine Technical Conference and Exposition,American Society of Mechanical Engineers, 2014: V07AT28A001-V07AT28A001.
[35] Leifsson L, Hermannsson E, Koziel S.Optimal shape design of multi-element trawl-doors using local surrogate models[J]. Journal of Computational Science, 2015, 10: 55-62.
[36] Golzari A, Sefat M H, Jamshidi S.Development of an adaptive surrogate model for production optimization[J]. Journal of Petroleum Science and Engineering, 2015, 133: 677-688.
[37] Pan I, Das S.Kriging based surrogate modeling for fractional order control of microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(1): 36-44.
[38] Mehmani A, Chowdhury S, Messac A.Predictive quantification of surrogate model fidelity based on modal variations with sample density[J]. Structural and Multidisciplinary Optimization, 2015, 52(2): 353-373.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 徐亮, 兰进, 王明森, 高建民, 李云龙. 旋度对旋转冲击射流传热特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1483-1491.
[14] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[15] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!