吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 1153-1160.doi: 10.13229/j.cnki.jdxbgxb20170494

• • 上一篇    下一篇

金属棒试样拉伸和扭转试验应变范围和力学特性对比

陈俊甫1,2, 管志平1,2, 杨昌海3, 牛晓玲1,2, 姜振涛1,2, 宋玉泉1,2   

  1. 1.吉林大学 材料科学与工程学院,长春 130022;
    2.吉林大学 超塑性与塑性研究所,长春 130022;
    3.吉林大学 汽车工程学院,长春 130022
  • 收稿日期:2017-04-22 出版日期:2018-07-01 发布日期:2018-07-01
  • 通讯作者: 杨昌海(1975-),男,高级工程师,博士.研究方向:汽车车身设计.E-mail:ych@jlu.edu.cn
  • 作者简介:陈俊甫(1993-),男,博士研究生.研究方向:金属塑性成形.E-mail:chenjf15@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51575230).

Comparison of strain ranges and mechanical properties of metal rods under tension and torsion tests

CHEN Jun-fu1,2, GUAN Zhi-ping1,2, YANG Chang-hai3, NIU Xiao-ling1,2, JIANG Zhen-tao1,2, Song Yu-quan1,2   

  1. 1.College of Materials Science and Engineering, Jilin University, Changchun 130022,China;
    2.Superplastic & Plastic Research Institute, Jilin University, Changchun 130022,China;
    3.College of Automotive Engineering, Jilin University, Changchun 130022,China
  • Received:2017-04-22 Online:2018-07-01 Published:2018-07-01

摘要: 针对3种不同延性的金属圆棒型试样,分别采用拉伸试验和扭转试验考察金属在不同应力状态下的应变范围和力学特性。其中拉伸试验应用Bridgman法测量金属颈缩出现后直至断裂前的硬化曲线。拉伸和扭转状态下试验结果的对比分析表明,由于力学稳定性方面的差异,金属棒材在扭转状态下均匀应变范围要大于拉伸状态,而由于不同应力状态下断裂机制的差异,金属棒材扭转断裂前应变范围要大于拉伸断裂前应变范围,因此扭转试验的应变测量范围大于拉伸试验的Bridgman法。Bridgman法具有局限性,仅适用于延性大且硬化能力弱具有显著颈缩的金属,而扭转试验具有通用性,适用于不同性能的金属。与拉伸或压缩状态相比,金属棒材在扭转状态下呈现不同程度的“软化”现象,即材料在扭转状态下更易达到塑性屈服,同时硬化能力和极限承载能力均显著减弱。

关键词: 材料合成与加工工艺, 硬化曲线, 拉伸和扭转, 应变, 颈缩

Abstract: Three kinds of metal rods with different ductility were used to study the strain ranges and mechanical properties of metal under different stress states by tension and torsion tests. The Bridgman method was used to measure the hardening curve from the beginning of necking to the final fracture. Comparison and analysis of the two test results show that the uniform strain ranges of the metal rod in the torsion state are larger than those in the tension state because of the difference of mechanical stability. Due to the difference of the fracture mechanism under different stress states, the strain ranges before fracture of metal in torsion test are larger than those in tension test. So the total strain ranges measured in torsion test are larger than those in tension test with Bridgman method. The Bridgman method has limitations, which is only applicable to metals with large ductility and weak hardening ability, while, torsion test is versatile and suitable for metal with different properties. Comparing with the tension or compression state, the metal rod exhibits different degrees of “softening phenomenon” in the torsion state, that is, the metal is more likely to reach plastic yield in the torsion state, and the hardening ability and the ultimate bearing capacity are obviously weakened.

Key words: materials synthesis and processing technology, hardening curve, tension and torsion, strain, necking

中图分类号: 

  • TG301
[1] Nadai A.Theory of Flow and Fracture of Solids II[M]. New York:Mcgraw-Hill Book Company, 1950:347-352.
[2] Bridgman P W.Studies in Large Plastic Flow and Fracture[M]. New York: McGraw-Hill Book Company, 1952:9-37.
[3] Yu J H, Mcwilliams B A, Kaste R P.Digital image correlation analysis and numerical simulation of aluminum alloys under quasi-static tension after necking using the bridgman's correction method[J]. Experimental Techniques, 2016, 40(5):1-9.
[4] Tsuchida N, Inoue T, Enami K.Estimations of the true stress and true strain until just before fracture by the stepwise tensile test and bridgman equation for various metals and alloys[J]. Journal of the Japan Institute of Metals, 2012, 76(10):579-586.
[5] Grytten F, Daiyan H, Polanco-Loria M, et al.Use of digital image correlation to measure large-strain tensile properties of ductile thermoplastics[J]. Polymer Testing, 2009, 28(6):653-660.
[6] Zhu F, Bai P, Zhang J, et al.Measurement of true stress-strain curves and evolution of plastic zone of low carbon steel under uniaxial tension using digital image correlation[J]. Optics & Lasers in Engineering, 2015, 65:81-88.
[7] Reis L C, Oliveira M C, Santos A D, et al.On the determination of the work hardening curve using the bulge test[J]. International Journal of Mechanical Sciences, 2016, 105:158-181.
[8] 陈辉,蔡力勋,包陈. 基于小圆环试样获取金属材料单轴本构关系的FAT方法[J]. 应用数学和力学, 2014(增刊1):136-140.
Chen Hui, Cai Li-xun, Bao Chen.FAT method based on ring compression test to obtain uniaxial constitutive relationship for metals[J]. Applied Mathematics and Mechanics, 2014(Sup.1):136-140.
[9] Yogo Y, Sawamura M, Hosoya M, et al.Measurement method for stress-strain curve in a super-large strain range[J]. Materials Science & Engineering A, 2014, 600(4):82-89.
[10] 谢子令,武晓雷,谢季佳,等. 高压扭转铜试样的微观组织与压缩性能[J]. 金属学报, 2008, 44(7):803-809.
Xie Zi-ling, Wu Xiao-lei, Xie Ji-jia, et al.Microstructures and compression properties of copper specimens deformed by high-pressure torsion[J]. Acta Metallurgica Sinica, 2008,44(7):803-809.
[11] Joun M S, Eom J G, Min C L.A new method for acquiring true stress-strain curves over a large range of strains using a tensile test and finite element method[J]. Mechanics of Materials, 2008, 40(7):586-593.
[12] Zhao K, Wang L, Chang Y, et al.Identification of post-necking stress-strain curve for sheet metals by inverse method[J]. Mechanics of Materials, 2016, 92:107-118.
[13] GB/T 228-2002. 金属材料室温拉伸试验方法[S].
[14] GB/T5028-2008. 金属材料薄板和薄带拉伸应变硬化指数(n值)的测定[S].
[15] GB/T 10128-2007,金属材料室温扭转试验方法[S].
[16] 管志平,马品奎,宋玉泉. 超塑性拉伸断裂分析[J]. 金属学报, 2013,49(8):1003-1011.
Guan Zhi-ping, Ma Pin-kui, Song Yu-quan.Analysis of fracture during superplastic tension[J]. Acta Metallurgica Sinica,2013,49(8):1003-1011.
[17] 姜薇,李亚智,苏杰,等. 2024-T3铝合金拉伸及剪切断裂行为[J]. 固体火箭技术, 2015(3):426-432.
Jiang Wei, Li Ya-zhi, Su Jie, et al.Tensile and shear failure mechanisms of2024-T3 aluminum alloy[J]. Journal of Solid Rocket Technology, 2015(3):426-432.
[18] Dieter G E.Mechanical Metallurgy[M]. 3rd ed. Beijing :Tsinghua University Press,2006:344-346.
[19] 赵慧娟,庄茁,郑泉水. 大变形扭转塑性硬化的实验和仿真研究[J]. 力学学报, 2002, 34(5):804-811.
Zhao Hui-juan, Zhuang Zhuo, Zheng Quan-shui.Test and simulation for large deformed torsion and plastic hardening[J]. Chinese Journal of Theoretical and Applied Mechanics, 2002, 34(5):804-811.
[20] Graham S M, Zhang T, Gao X, et al.Development of a combined tension-torsion experiment for calibration of ductile fracture models under conditions of low triaxiality[J]. International Journal of Mechanical Sciences, 2012, 54(1):172-181.
[21] Corrêa E C S, Aguilar M T P, Monteiro W A, et al. Work hardening behavior of prestrained steel in tensile and torsion tests[J]. Journal of Materials Science Letters, 2000, 19(9):779-781.
[22] El-Danaf E, Kalidindi S R, Doherty R D.Influence of deformation path on the strain hardening behavior and microstructure evolution in low SFE FCC metals[J]. International Journal of Plasticity, 2001, 17(9):1245-1265.
[23] 孙朝阳,郭祥如,郭宁,等. 耦合孪生的TWIP钢多晶体塑性变形行为研究[J]. 金属学报, 2015, 51(12):1507-1515.
Sun Chao-yang, Guo Xiang-ru, Guo Ning, et al.Investigation of plastic deformation behavior on coupling twinning of polycrystal TWIP steel[J]. Acta Metallurgica Sinica,2015, 51(12):1507-1515.
[1] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[2] 胡志清, 颜庭旭, 李洪杰, 吕振华, 廖伟, 刘庚. 深冷处理对铝合金薄板冲剪成形性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1524-1530.
[3] 邱小明, 王银雪, 姚汉伟, 房雪晴, 邢飞. 基于灰色关联的DP1180/DP590异质点焊接头工艺参数优化[J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[4] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[5] 刘子武, 李剑峰. 叶片材料FV520B再制造熔覆层冲蚀损伤行为及评价[J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[6] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[7] 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[8] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[9] 王辉, 周杰, 熊煜, 陶亚平, 向荣. 基于逆向工程的复杂曲面冲压件回弹补偿[J]. 吉林大学学报(工学版), 2017, 47(6): 1842-1847.
[10] 王春生, 邹丽, 杨鑫华. 基于邻域粗糙集的铝合金焊接接头疲劳寿命影响因素分析[J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
[11] 邢海燕, 葛桦, 李思岐, 杨文光, 孙晓军. 基于模糊隶属度最大似然估计的焊缝隐性缺陷磁记忆信号识别[J]. 吉林大学学报(工学版), 2017, 47(6): 1854-1860.
[12] 谷晓燕, 刘亚俊, 孙大千, 徐锋, 孟令山, 高帅. S355钢/6005A铝合金瞬间液相扩散连接接头组织与性能[J]. 吉林大学学报(工学版), 2017, 47(5): 1534-1541.
[13] 谷诤巍, 张文学, 吕萌萌, 王伟, 徐虹, 李欣. 宽翼边U型截面不锈钢型材拉弯成形缺陷控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1165-1170.
[14] 李静, 王哲. 真三轴加载条件下混凝土的力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[15] 寇淑清, 宋玮峰, 石舟. 36MnVS4连杆裂解加工模拟及缺陷分析[J]. 吉林大学学报(工学版), 2017, 47(3): 861-868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 彭其渊,徐进,郑升宝,邵毅明,邓天民. 隧道洞口路面两种材料交替对行车的影响及交替位置优化[J]. 吉林大学学报(工学版), 2009, 39(06): 1497 -1503 .
[2] 王昕,姜继海. 轮边驱动液压混合动力车辆再生制动控制策略[J]. 吉林大学学报(工学版), 2009, 39(06): 1544 -1549 .
[3] 武剑,董惠娟,张松柏,张广玉. 压电超声换能器初级串联匹配新方法[J]. 吉林大学学报(工学版), 2009, 39(06): 1641 -1645 .
[4] 郑文忠, 万夫雄, 李时光. 用无机胶粘贴CFRP布加固混凝土板火灾后受力性能[J]. 吉林大学学报(工学版), 2010, 40(05): 1244 -1249 .
[5] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[6] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[7] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[8] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[9] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[10] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .