吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (5): 1484-1491.doi: 10.13229/j.cnki.jdxbgxb20180351

• • 上一篇    

基于关联规则的公共交通通勤稳定性人群辨识

梁泉1(),翁剑成1(),周伟2,荣建1   

  1. 1. 北京工业大学 城市交通学院,北京100124
    2. 中华人民共和国交通运输部 政策研究室,北京100736
  • 收稿日期:2018-04-16 出版日期:2019-09-01 发布日期:2019-09-11
  • 通讯作者: 翁剑成 E-mail:lquan0730@163.com;youthweng@bjut.edu.cn
  • 作者简介:梁泉(1989-),女,博士研究生.研究方向:公共交通,出行行为.E-mail:lquan0730@163.com
  • 基金资助:
    国家自然科学基金项目(51578028);北京市“科技新星”计划项目(Z171100001117100)

Stability identification of public transport commute passengers based on association rules

Quan LIANG1(),Jian-cheng WENG1(),Wei ZHOU2,Jian RONG1   

  1. 1. College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China
    2. Policy Research Office, Ministry of Transport of the People’s Republic of China, Beijing 100736, China
  • Received:2018-04-16 Online:2019-09-01 Published:2019-09-11
  • Contact: Jian-cheng WENG E-mail:lquan0730@163.com;youthweng@bjut.edu.cn

摘要:

通过对北京市公共交通乘客出行行为调查数据、公共交通刷卡数据和线站数据进行关联匹配,提取了公共交通通勤乘客出行链。利用一个月的公共交通出行数据,从活动点、出行空间和出行时间的角度提取了非家活动点类别数、典型出行链占比、出行空间均衡度、时间稳定性和时间集中度5类指标用来描述乘客出行稳定性。引入关联规则方法中FP-growth算法,采用支持度、置信度和提升度3个参数挖掘不同项集长度下各特征属性之间的关联规则,识别出3类稳定性差异显著的通勤人群,并对辨识方法的合理性进行了验证。研究为制定针对性和差别化的公交供需管理策略提供了支撑,助力更加高效和精细化的公共交通出行服务。

关键词: 交通运输系统工程, 通勤乘客, 稳定性判别, 关联规则

Abstract:

To better understand the characteristics of public transport commute passengers with different categories and further to better meet their customized travel demands, it is necessary to find ways to identify public transport commuters’ stability accurately. Based on revealed preference survey data, public transport smart card transaction and network data, the travel chain of public transport commuter was obtained by data processing and matching. According to public transport travel behavior data of one month, five characteristic indexes were extracted to represent travel stability from the aspects of activity point, travel space and travel time. These feature indexes include the number of non-home activity categories, the proportion of typical travel chain, space balance degree, time stability and time concentration degree. Through applying FP-growth algorithm, the association rules among each characteristics attributes for different item-sets were mined depending on parameters of support, confidence and lift degree. Then, three categories of public transport commute passengers with apparently different stabilities were identified. Finally, the rationality of the proposed identification method was verified. The study results contribute to developing customized and targeted supply and demand management strategy for public transport travel, which would further help to improve the efficient and delicacy service level of public transport.

Key words: engineering of communications and transportation system, commute passenger, stability identification, association rule

中图分类号: 

  • U491.1

表1

个体乘客出行链示意"

卡号出行模式上车时间下车时间上车线路号下车线路号出行距离/m上车站点下车站点上车站点经度/(°)上车站点纬度/(°)下车站点经度/(°)下车站点纬度/(°)
24050273地铁

2017/4/1

08:28

2017/4/1

08:55

418115

北京

南站

木樨地116.377939.8641116.336939.9075
24050273地铁

2017/4/1

17:53

2017/4/1

16:29

148115木樨地

北京

南站

116.336939.9075116.377939.8641
?
24050273公交

2017/4/30

17:04

2017/4/30

17:39

1141148620

白云

桥西

开阳

桥南

116.339539.8973116.347139.8666

表2

公交通勤乘客稳定性指标概化结果"

稳定性指标分裂点(C分类比例/%标签分类属性
N

C12=7

C23=3

10N1
52N2
38N3
R

C12=0.59

C23=0.41

7R1
54R2
39R3
A

C12=1.46

C23=2.29

15A1
46A2
39A3
P

C12=0.82

C23=0.60

41P1
31P2
28P3
T

C12=0.46

C23=0.34

27T1
38T2
35T3

图1

频繁项集支持度与关联规则数关系图"

表3

二项集关联规则挖掘表"

关联规则支持度置信度提升度
N3?A30.320.842.16
A3?N30.82
N2?A20.370.711.55
A2?N20.80
R2?P10.350.651.58
P1?R20.85

图2

二项集关联规则可视化"

表4

三项集关联规则挖掘"

关联规则支持度置信度提升度
N3 ∩ A3?P1

0.24

0.24

0.24

0.751.83
A3 ∩ P1?N30.892.34
N3 ∩ P1?A31.002.56
?

表5

四项集关联规则结果表"

关联规则支持度置信度提升度
N3 ∩ A3 ∩ P1?R2

0.2

0.2

0.2

0.2

0.831.54
R2 ∩ A3 ∩ P1?N30.912.39
N3 ∩ R2 ∩ A3?P10.832.03
N3 ∩ R2 ∩ P1?A31.002.56
?

表6

通勤乘客稳定性人群分类"

序号关联规则支持度分类描述稳定性
非家活动点类别典型出行链占比活动复杂度时间稳定性时间集中度
1N3 R2 A3 P1 T10.13

2N3 R2 A3 P1 T20.06
3N2 R2 A2 P1 T20.09

4N2 R2 A2 P2 T20.07
5N2 R3 A2 P3 T30.05

6N2 R3 A1 P2 T30.05
7N2 R3 A2 P2 T30.05

图3

通勤乘客稳定性分类可视化图"

图4

验证结果统计"

1 北京交通发展研究. 2016年北京市交通发展年度报告[R]. 北京: 北京交通发展研究院, 2016.
2 翁剑成, 王昌, 王月玥, 等. 基于个体出行数据的公共交通出行链提取方法[J]. 交通运输系统工程与信息, 2017, 17(3): 67-73.
WengJian-cheng, WangChang, WangYue-yue, et al. Extraction method of public transit trip chains based on the individual riders' data[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 67-73.
3 孙世超, 杨东援. 基于朴素贝叶斯分类器的公交通勤人群辨识方法[J]. 交通运输系统工程与信息, 2015, 15(6): 46-53.
SunShi-chao, YangDong-yuan. Identification of transit commuters based on naïve bayesian classifier[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(6): 46-53.
4 袁荣亮. 公共交通通勤者出行方式选择行为研究[D]. 北京: 北京工业大学城市交通学院, 2016.
YuanRong-liang. Research on travel mode choice behavior of public transport commuters[D]. Beijing: College of Metropolitan Transportation, Beijing University of Technology, 2016.
5 刘花, 陈艳艳. 北京市居民出行方式人群分类[J]. 交通标准化, 2014, 42(5): 6-11.
LiuHua, ChenYan-yan. Segmentation of travel mode group for Beijing residents[J]. Transportation Standardization, 2014, 42(5): 6-11.
6 狄迪, 杨东援. 基于人群分类的城市公交走廊客流分配模型[J]. 同济大学学报: 自然科学版, 2016, 44(2): 235-242.
DiDi, YangDong-yuan. A passenger-classification transportation assignment model for urban public traffic corridor[J]. Journal of Tongji University (Natural Science), 2016, 44(2): 235-242.
7 BartD, TijsN, MarioV, et al. Examining commuting patterns using floating car data and circular statistics: exploring the use of new methods and visualizations to study travel times[J]. Journal of Transport Geography, 2015, 48: 41-51.
8 HanJ W, KamberM. Data mining: concepts and techniques[M]. San Francisco: Morgan Kaufmann, 2001.
9 王月玥. 基于多源数据的公共交通通勤出行特征提取方法研究[D]. 北京: 北京工业大学城市交通学院, 2014.
WangYue-yue. Research on methods of extraction commuting trip characteristic based on public transportation multi-source data[D]. Beijing: College of Metropolitan Transportation, Beijing University of Technology, 2014.
10 AgrawalR, ImielinskiT, SwamiA. Database mining: a performance perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 1993, 5(6): 914-925.
11 AgrawalR, ImielinskiT, SwamiA. Mining association rules between sets of items in large databases[J]. ACM SIGMOD Record, 1993, 22(2): 207-216.
12 崔研, 包志强. 关联规则挖掘综述[J]. 计算机应用研究, 2016, 33(2): 330-334.
CuiYan, BaoZhi-qiang. Survey of association rule mining[J]. Application Research of Computers, 2016, 33(2): 330-334.
13 FooteP J, StuartD G, Elmore-YalchR. Exploring customer loyalty as a transit performance measure[J]. Transportation Research Record: Journal of the Transportation Research Record, 2001(1753): 93-101.
14 曲昭伟, 姚荣涵, 王殿海. 基于最大信息熵原理的居民出行分布模型[J]. 吉林大学学报: 工学版, 2003, 33(2): 15-19.
QuZhao-wei, YaoRong-han, WangDian-hai. Inhabits trip distribution model based on maximum information entropy theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2003, 33(2): 15-19.
15 王秀枝, 安建成. 基于支持度和置信度智能优化的关联分类算法[J]. 计算机应用与软件, 2013, 30(11): 184-186, 198.
WangXiu-zhi, AnJian-cheng. Associative classification algorithm based on intelligent optimisation of support and confidence[J]. Computer Applications and Software, 2013, 30(11): 184-186, 198.
[1] 别一鸣,汤茹茹,王运豪,文斌,冯天军,王琳虹. 信号交叉口进口车道饱和流率估计方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1459-1464.
[2] 吴文静,陈润超,贾洪飞,罗清玉,孙迪. 车路协同环境下路段掉头区域车辆协同控制[J]. 吉林大学学报(工学版), 2019, 49(4): 1100-1106.
[3] 江亮,贺宜. 电动两轮车风险驾驶行为及事故影响因素分析[J]. 吉林大学学报(工学版), 2019, 49(4): 1107-1113.
[4] 曲昭伟,潘昭天,陈永恒,陶鹏飞,孙迪. 基于最优速度模型的改进安全距离跟驰模型[J]. 吉林大学学报(工学版), 2019, 49(4): 1092-1099.
[5] 白乔文,曲昭伟,陈永恒,熊帅,陶楚青. 非严格优先权下无左转专用相位直行车辆轨迹模型建立[J]. 吉林大学学报(工学版), 2019, 49(3): 673-679.
[6] 李志慧,钟涛,赵永华,胡永利,李海涛,赵景伟. 面向车辆自主驾驶的行人跟踪算法[J]. 吉林大学学报(工学版), 2019, 49(3): 680-687.
[7] 曹宁博,赵利英,曲昭伟,陈永恒,白乔文,邓晓磊. 考虑双向行人跟随行为的社会力模型[J]. 吉林大学学报(工学版), 2019, 49(3): 688-694.
[8] 罗小芹,王殿海,金盛. 面向混合交通的感应式交通信号控制方法[J]. 吉林大学学报(工学版), 2019, 49(3): 695-704.
[9] 陈磊,王江锋,谷远利,闫学东. 基于思维进化优化的多源交通数据融合算法[J]. 吉林大学学报(工学版), 2019, 49(3): 705-713.
[10] 凃强,程琳,林芬,孙超. 考虑出行者风险态度的最优路径搜索[J]. 吉林大学学报(工学版), 2019, 49(3): 720-726.
[11] 尹超英,邵春福,王晓全. 考虑停车可用性的建成环境对小汽车通勤出行的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 714-719.
[12] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[13] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[14] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[15] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!