吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (6): 1375-1385.doi: 10.13229/j.cnki.jdxbgxb20210062

• 交通运输工程·土木工程 • 上一篇    

多孔沥青混合料的动态模量及其预估模型

何兆益1(),李金凤1,周文2,官志桃1   

  1. 1.重庆交通大学 土木工程学院,重庆 400074
    2.广西交通投资集团有限公司,南宁 530022
  • 收稿日期:2021-01-22 出版日期:2022-06-01 发布日期:2022-06-02
  • 作者简介:何兆益(1965-),男,教授,博士. 研究方向:道路工程材料. E-mail:hzyzwb@cqjtu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(51978116);交通运输部行业重点科技项目(2018-TG-003)

Dynamic modulus of porous asphalt concrete and its prediction model

Zhao-yi HE1(),Jin-feng LI1,Wen ZHOU2,Zhi-tao GUAN1   

  1. 1.School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074,China
    2.Guangxi Communications Investment Group Corporation Ltd. ,Nanning 530022,China
  • Received:2021-01-22 Online:2022-06-01 Published:2022-06-02

摘要:

针对连续密级配沥青混合料AC-13、沥青玛蹄脂碎石SMA-13以及6种多孔沥青混合料(PAC-16、PAC-13a、PAC-13b、PAC-13c、PAC-10和PAC-5)开展了不同荷载频率和温度下的动态模量试验。试验结果显示:沥青混合料的动态模量随着加载频率的增大而增大,随着温度的升高而减小,变化幅度均呈逐渐减小趋势;相比空隙率为20.3%的PAC-13b,SBS沥青AC-13和SMA-13混合料的动态模量分别平均增加了196.8%和125.1%;空隙率相近的情况下,多孔沥青混合料的动态模量随着公称最大粒径的增大略有增大;公称最大粒径相同时,空隙率减小了1%,多孔沥青混合料的动态模量平均增加了约15.8%。基于时-温度等效原理,构建了移位因子与温度的关系表达式,利用Sigmoidal模型推导计算了混合料动态模量的主曲线;综合考虑了加载频率、试验温度、沥青黏度、混合料体积特性及集料级配等多个因素的影响,建立了适用于不同级配沥青混合料动态模量的预估模型,预测值与实测结果具有较高吻合度,说明该模型能够应用于沥青路面的结构设计和分析。

关键词: 土木工程, 多孔沥青混合料, 动态模量, 时-温等效, 主曲线, 预估模型

Abstract:

The dynamic modulus of dense gradation asphalt mixture AC-13, stone mastic asphalt SMA-13 and six kinds of porous asphalt concrete (PAC-16, PAC-13a, PAC-13b, PAC-13c, PAC-10 and PAC-5) were tested at different temperatures and different loading frequencies. The dynamic modulus of asphalt mixture are respectively increased with the loading frequency increasing and decreased with temperature increasing, and the changing amplitudes are both gradually reduced. Compared with PAC-13b with 20.3% void content, the average values of 196.8% and 125.1% increase in dynamic modulus for SBS asphalt AC-13 and SMA-13,respectively. For the porous asphalt mixtures with closely void content, a slightly reduction of dynamic modulus is observed for porous asphalt mixture with the increase of nominal maximum particle size. When the mixtures have same the nominal maximum particle size, the dynamic modulus of porous asphalt mixture is increased about 15.8% with the reduction of void content 1%. According to the time-temperature superposition principle, the expression of the shift factor is established to describe the effect of temperature, and the master curves of different asphalt mixtures are modeled, calculated and plotted by Sigmoidal function. Various factors, such as loading frequency, testing temperature, asphalt binder viscosity, volumetric properties of asphalt mixture and aggregate gradation, are considered to develop the predictive dynamic modulus equation for different asphalt mixture. The results show that the predicted values are in good agreement with the measured results, indicating that the predicted dynamic modulus model can be applied in structure design and analysis of asphalt pavement.

Key words: civil engineering, porous asphalt concrete, dynamic modulus, temperature-time dependent, master curve, prediction model

中图分类号: 

  • U414

图1

不同沥青混合料的集料级配组成"

图2

制备好的试件"

图3

动态模量测试仪器"

图4

可恢复应变相对施加正弦应力的相位滞后"

图5

不同温度下6种沥青混合料动态随加载频率的变化关系"

图6

不同加载频率下6种沥青混合料动态随温度的变化关系"

图7

相比PAC-13b,SBS沥青AC-13和SMA-13混合料动态模量的增长率"

图8

相比PAC-5,PAC-10、PAC-13b和PAC-16混合料动态模量的增长率"

图9

相比PAC-13c,PAC-13a和PAC-13b动态模量的增长率"

图10

荷载频率10 Hz条件下,70#和SBS改性沥青AC-13混合料的动态模量"

图11

相比70#沥青,SBS改性沥青AC-13混合料动态模量的增长率"

表1

动态模量主曲线的模型系数"

级配类型δαβγbR2
70#沥青AC-131.8042.853-0.3547-0.53210.31280.9980
SBS沥青AC-132.1082.519-0.2656-0.52030.30340.9993
SMA-132.0762.487-0.1469-0.51280.29360.9993
PAC-161.2303.142-0.3875-0.47240.32600.9995
PAC-13a1.2993.197-0.4899-0.40930.32230.9994
PAC-13b1.1653.161-0.4101-0.48600.29160.9996
PAC-13c1.0753.083-0.4273-0.50560.28970.9998
PAC-101.1573.019-0.4005-0.47050.31410.9992
PAC-51.1563.085-0.4384-0.44530.30710.9994

图12

不同多孔沥青混合料动态模量的主曲线"

图13

沥青混合料动态模量实测值与预测值的比较"

图14

模型预测值与他人文献中动态模量实测值的比较"

1 陈俊, 姚成, 周若愚, 等. 多孔沥青混合料渗水性能的方向差异性及其受空隙结构的影响[J]. 东南大学学报:自然科学版, 2018, 48(5): 920-926.
Chen Jun, Yao Cheng, Zhou Ruo-yu, et al. Directional differentce of water permeability of porous asphalt mixture and influence of pore structure[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(5): 920-926.
2 Chu L, Fwa T F, Tan K H. Eveluation of wearing course mix designs on sound absorption improvement of porous asphalt pavement[J]. Construction and Building Materials, 2017, 141: 402-409.
3 Zhang Y, Wang L, Zhang W, et al. Modified dynamic modulus test and customised prediction model of asphalt-treated drainage layer material for M-E pavement design[J]. International Journal of Pavement Engineering, 2016, 17(9): 818-828.
4 Loulizt A, Al-Qadi I L, Elseifi M. Difference between in situ flexible paavement measure and calculated stresses and strains[J]. Journa of Transportation Engineering, 2006, 132(7): 574-579.
5 Lee J, Moon S J, Im J, et al. Evaluation of moisture susceptibility of asphalt mixtures using dynamic modulus[J]. Journal of Testing and Evaluation, 2017, 45(4): No. 20150136.
6 Akbarzadeh H, Bayat A, Soleymani H R. Analytical review of the HMA temperature correction factors from laboratory ans falling weight deflectometer tests[J]. International Journal of Pavement Research and Technology, 2012, 5(1): 30-39.
7 Zhang Y, Luo R, Lytton R L. Characterizing permanent deformation and fracture of asphalt mixture by using compressive dynamic modulus tests[J]. Journal of Materials in Civil Engineering, 2012, 24(7): 898-906.
8 Cho Y H, Park D W, Hwang S D. A predictive equation for dynamic modulus of asphalt mixture used in Korea[J]. Construction and Building Material, 2010, 24(4): 513-519.
9 Irfan M, Waraich A S, Ahmed S, et al. Characterization of various plant-ptoduced asphalt concrete mixture using dynamic modulus test[J]. Advances in materials Science and Engineering, 2016, 14(2):1-12.
10 Weldegiorgis M T, Tarefder R A. Prescision study for dynamic modulus testing of asphalt concrete using independent assurance testing[J]. Journal of Materials in Civil Engineering, 2015, 27(3):04014133.
11 Wen Y, Wang Y. Effect of oxidative aging on dynamic modulus of hot-mix asphalt mixture[J]. Journal of Materials in Civil Engineering, 2019, 31(1): 1-15.
12 Nobakht M, Sakhaeifar M S. Dynamic modulus and phase angel prediction of laboratory aged asphalt mixtures[J]. Construction and Building Materials, 2018, 190: 740-751.
13 Arefin S, Quasem T, Nazzal M, et al. Accuracy of MEPDG dynamic modulus predictions for short-term and long-term aged asphalt mixtures[J] Journal of Transportation Engineering, Part B: 2019, 145(3): No. 04019025.
14 张金喜, 姜凡, 王超, 等. 室内外老化沥青混合料动态模量评价[J]. 建筑材料学报, 2017, 20(6): 937-942.
Zhang Jin-xi, Jiang Fan, Wang Chao, et al. Dynamic modulus evaluation of indoor and outdoor aging aspahalt mixture[J]. Journal of Building Materials, 2017, 20(6): 937-942.
15 Zhao Y, Tang J, Liu H. Construction of triaxial dynamic modulus master curve for aspahtl mixtures[J]. Construction and Building Materials, 2012, 37: 21-26.
16 Nguyen T H, Ahn J, Lee J, et al. Dynamic modulus of porous asphalt and the effect of moisture conditioning[J]. Materials, 2019, 12(8): No.1230.
17 Ruan L, Luo R, Hu X, et al. Effect of bell-shaped loading and haversine loading on the dynamic modulus and resilient modulus of asphalt mixtures[J]. Construction and Building Materials, 2018, 161: 124-131.
18 Al-Adham K, Baig M G, Wahhab H A A. Prediction of dynamic modulus for elstomer-modified asphalt concrete mixes at desert environment[J]. Arabin Journal for Science and Engineering, 2019, 44: 4141-4149.
19 谭忆秋, 傅锡光, 马韶军, 等. 基于无约束共振法沥青混合料动态模量试验研究[J]. 土木工程学报, 2015, 48(12): 116-122.
Tan Yi-qiu, Fu Xi-guang, Ma Shao-jun, et al. Experimental study on dynamic modulus of asphalt mixture based on free-free resonant test[J]. China Civil Engineering Journal, 2015, 48(12): 116-122.
20 吴浩, 张久鹏, 王秉刚. 多孔沥青混合料空隙特征与路用性能关系[J]. 交通运输工程学报, 2010, 10(1): 1-5.
Wu Hao, Zhang Jiu-peng, Wang Bing-gang. Relationship between characteristic of void and road performance of porous asphalt mixture[J], Journal of Traffic and Transportation Engineering, 2010, 10(1): 1-5.
21 公路沥青路面施工技术规范 [S].
22 . 公路工程沥青及沥青混合料试验规程 [S].
23 AA . Standard test method for determining the dynamic modulus of hot-mix asphalt[S].
24 Mirza MW, Witczak M W. Development of a global aging system for shaor and long term aging of asphalt cement[J]. Journal of Associate Asphalt Pavement Technology, 1995, 64: 393-430.
25 Zhao S, Liu J, Li P, et al. Dynamic modulus characterization of Alaskan asphalt mixtures for mechanistic-empirical pavement design[J]. Journal of Materials in Civil Engineering, 2017, 29(11):No. 04017213.
[1] 谷拴成,聂红宾. 极温冻融-荷载作用下碳纤维复合材料修复试件损伤分析[J]. 吉林大学学报(工学版), 2021, 51(6): 2108-2120.
[2] 周靖,黎亚军,赵卫锋,罗宗健,补国斌. 胶合竹板-钢管约束收尘石粉混凝土柱的偏压性能[J]. 吉林大学学报(工学版), 2021, 51(6): 2096-2107.
[3] 张广泰,张路杨,邢国华,曹银龙,易宝. 钢-聚丙烯混杂纤维混凝土剪力墙抗震性能[J]. 吉林大学学报(工学版), 2021, 51(3): 946-955.
[4] 刘柳,冯卫星. 基于NNBR模型的隧道盾构施工地表沉降实测与计算分析[J]. 吉林大学学报(工学版), 2021, 51(1): 245-251.
[5] 许卫晓,程扬,杨伟松,鞠佳昌,于德湖. RC框架⁃抗震墙并联结构体系拟静力试验[J]. 吉林大学学报(工学版), 2021, 51(1): 268-277.
[6] 单德山,张潇,顾晓宇,李乔. 斜拉索悬链线构形的伸长量解析计算方法[J]. 吉林大学学报(工学版), 2021, 51(1): 217-224.
[7] 薛素铎,鲁建,李雄彦,刘人杰. 跳格布置对环形交叉索桁结构静动力性能的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1687-1697.
[8] 王勃,董元正,董丽欣. 基于短期风速资料的基本风压计算方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1739-1746.
[9] 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667.
[10] 王鹏辉,乔宏霞,冯琼,曹辉,温少勇. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报(工学版), 2020, 50(1): 191-201.
[11] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[12] 张军,钱诚,郭春燕,钱玉君. 基于多源时空数据的建筑宜居性动态设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1169-1173.
[13] 梁宁慧,缪庆旭,刘新荣,代继飞,钟祖良. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报(工学版), 2019, 49(4): 1144-1152.
[14] 张磊,刘保国,储昭飞. 深厚孔隙砂岩含水层疏干排水对盾构斜井的 影响模型试验[J]. 吉林大学学报(工学版), 2019, 49(3): 788-797.
[15] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!