吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2300-2306.doi: 10.13229/j.cnki.jdxbgxb20210224

• 材料科学与工程 • 上一篇    

玄武岩纤维对不饱和聚酯树脂复合材料的增韧

于开锋1,2(),何小玲1,2,李俊涛3,梁策1,2()   

  1. 1.吉林大学 材料科学与工程学院, 长春 130022
    2.吉林大学 汽车材料教育部重点实验室, 长春 130022
    3.长春富维安道拓汽车饰件系统有限公司, 长春 130011
  • 收稿日期:2021-03-20 出版日期:2022-10-01 发布日期:2022-11-11
  • 通讯作者: 梁策 E-mail:yukf@jlu.edu.cn;liangce@jlu.edu.cn
  • 作者简介:于开锋(1974-),男,教授,博士.研究方向:材料设计与加工. E-mail: yukf@jlu.edu.cn
  • 基金资助:
    吉林省科技厅重点项目(20190302055GX);吉林省科技厅自然科学基金项目(YDZJ202101ZYTS145)

Toughening effect of short basalt fiber on unsaturated polyester resin composites

Kai-feng YU1,2(),Xiao-ling HE1,2,Jun-tao LI3,Ce LIANG1,2()   

  1. 1.College of Materials Science and Engineering,Jilin University,Changchun 130022,China
    2.Key Laboratory of Automobile Materials,Ministry of Education,Jilin University,Changchun 130022,China
    3.Changchun Faway Adient Automotive Systems Co. ,Ltd. ,Changchun 130011,China
  • Received:2021-03-20 Online:2022-10-01 Published:2022-11-11
  • Contact: Ce LIANG E-mail:yukf@jlu.edu.cn;liangce@jlu.edu.cn

摘要:

制备了玄武岩纤维(SBF)层间增韧玄武岩纤维/不饱和聚酯树脂(BF/UP)复合材料层压板,研究了SBF的长度和面密度对复合材料的II型层间断裂韧性、拉伸性能和弯曲性能的影响。研究表明,层间加入SBF能提高复合材料的II型层间断裂韧性、拉伸性能和弯曲性能。当SBF长度为6 mm、面密度为30 g/m2时,复合材料的II型层间断裂韧性、拉伸强度、断裂伸长率、弯曲强度和能量吸收得到了最大提升,分别为103%、27%、50%、101%和58%。

关键词: 复合材料, 玄武岩纤维, II型层间断裂韧性, 拉伸性能, 弯曲性能

Abstract:

The interlayer toughened basalt fiber/unsaturated polyester resin (BF/UP) composites with short basalt fiber(SBF) were prepared. The Mode II interlaminar fracture toughness, the tensile properties and bending properties of composites with different lengths and surface densities were investigated. The studies show that SBF can improve the Mode II interlaminar fracture toughness, tensile properties and bending properties of composites. When the length of SBF is 6 mm and the surface density is 30 g/m2, the Mode II interlaminar fracture toughness, tensile strength, elongation at break, flexural strength and energy absorption of the composites have the maximum improvement, which are 103%, 27%, 50%, 101% and 58% respectively.

Key words: composites, short basalt fiber, Mode II interlaminar fracture toughness, tensile properties, bending properties

中图分类号: 

  • TG327

图1

最初的SBF和处理之后的SBF"

图2

增韧复合材料制造过程的示意图"

图3

II型层间韧性测试示意图"

图4

拉伸测试示意图"

图5

三点弯曲测试示意图"

图6

?铺入不同长度SBF的复合材料的II型层间断裂韧性"

图7

不同长度SBF铺入时复合材料的II型层间断裂形貌"

图8

SBF长度为6 mm、面密度为30 g/m2的复合材料的裂纹扩展图"

图9

复合材料的II型层间断裂形貌"

图10

铺入不同面密度SBF复合材料的II型层间断裂韧性"

图11

不同面密度的6 mm BF铺入时复合材料的II型层间断裂形貌"

图12

铺入不同长度SBF的复合材料的拉伸性能"

图13

铺入不同面密度SBF的复合材料的拉伸性能"

图14

铺入不同长度SBF的复合材料的弯曲性能"

图15

铺入不同面密度SBF的复合材料的弯曲性能"

1 Carolan D, Ivankovic A, Kinloch A J, et al. Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices[J]. Journal of Materials Science, 2016, 52(3): 1767-1788.
2 Hernandez T P A, Mills A R, Yazdani Nezhad H. Shear driven deformation and damage mechanisms in High-performance carbon fibre-reinforced thermoplastic and toughened thermoset composites subjected to high strain loading[J]. Composite Structures, 2020, 261: No.113289.
3 Caminero M A, Rodr Guez G P, Chac N J M, et al. Tensile and flexural damage response of symmetric angle-ply carbon fiber-reinforced epoxy laminates: non‐linear response and effects of thickness and ply‐stacking sequence[J]. Polymer Composites, 2019, 40(9): 3678-3690.
4 Hu Y S, Cheng F, Ji Y, et al. Effect of aramid pulp on low temperature flexural properties of carbon fibre reinforced plastics[J]. Composites Science and Technology, 2020, 192: No.108095.
5 Huang J J, Ma C G, Wang S, et al. Improving fracture toughness of epoxy resin composites by magnetic particles modified short glass fiber[J]. IOP Conference Series: Materials Science and Engineering, 2019, 563: No. 022035.
6 Sun Z, Hu X Z, Chen H R. Effects of aramid-fibre toughening on interfacial fracture toughness of epoxy adhesive joint between carbon-fibre face sheet and aluminium substrate[J]. International Journal of Adhesion and Adhesives, 2014, 48: 288-294.
7 Ravindran A R, Ladani R B, Wu S, et al. Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres[J]. Composites Science and Technology, 2018, 167: 115-125.
8 Yao J, Niu K, Niu Y, et al. Toughening efficiency and mechanism of carbon fibre epoxy matrix composites by PEK-C[J]. Composite Structures, 2019, 229: 111431.
9 Ravindran A R, Ladani R B, Wang C H, et al. Hierarchical mode I and mode II interlaminar toughening of Z-pinned composites using 1D and 2D carbon nanofillers[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105470.
10 Ladani R B, Ravomdram A R, Wu S, et al. Multi-scale toughening of fibre composites using carbon nanofibres and z-pins[J]. Composites Science and Technology, 2016, 131: 98-109.
11 Khandelwal S, Rhee K Y. Recent advances in basalt-fiber-reinforced composites: tailoring the fiber-matrix interface[J]. Composites Part B: Engineering, 2020, 192: 108011.
12 Zhao X, Wang X, Wu Z S, et al. Experimental study on effect of resin matrix in basalt fiber reinforced polymer composites under static and fatigue loading[J]. Construction and Building Materials, 2020, 242: 118121.
[1] 郑植,耿波,王福敏,董俊宏,魏思斯. 既有低等级混凝土护栏防护能力提升[J]. 吉林大学学报(工学版), 2022, 52(6): 1362-1374.
[2] 李伟,宋海生,陆浩宇,史文库,王强,王晓俊. 复合材料板簧迟滞特性线性辨识方法[J]. 吉林大学学报(工学版), 2022, 52(4): 829-836.
[3] 庄蔚敏,陈沈,吴迪. 碳纤维增强复合材料包裹强化形式对钢管横向冲击性能的影响[J]. 吉林大学学报(工学版), 2022, 52(4): 819-828.
[4] 卫宇璇,张明,刘佳,刘硕,路明雨,王洪雨. 基于模态缺陷的变刚度复合材料圆柱壳屈曲特性[J]. 吉林大学学报(工学版), 2022, 52(1): 91-100.
[5] 谷拴成,聂红宾. 极温冻融-荷载作用下碳纤维复合材料修复试件损伤分析[J]. 吉林大学学报(工学版), 2021, 51(6): 2108-2120.
[6] 刘寒冰,高鑫,宫亚峰,刘诗琪,李文俊. 表面处理对玄武岩纤维活性粉末混凝土力学性能的影响及断裂特性[J]. 吉林大学学报(工学版), 2021, 51(3): 936-945.
[7] 佟金,高子博,霍超,王子阳,马云海,常志勇. 低温下铜纳米颗粒对UHMWPE复合材料摩擦磨损性能影响[J]. 吉林大学学报(工学版), 2021, 51(2): 493-500.
[8] 杨帆,张旭东,赵蒙,折波,邓俊楷. 基于有限元计算的形状记忆合金⁃金属玻璃复合材料变形行为[J]. 吉林大学学报(工学版), 2021, 51(1): 172-180.
[9] 慕文龙,那景新,谭伟,王广彬,申浩,栾建泽. 基于FTIR分析的CFRP-铝合金粘接接头剩余强度预测[J]. 吉林大学学报(工学版), 2021, 51(1): 139-146.
[10] 李义,黄东迪,于开锋,梁继才,何小玲,任希彤. 硅炭黑改性玄武岩纤维增强聚酰胺6复合材料性能[J]. 吉林大学学报(工学版), 2021, 51(1): 181-187.
[11] 叶辉,刘畅,闫康康. 纤维增强复合材料在汽车覆盖件中的应用[J]. 吉林大学学报(工学版), 2020, 50(2): 417-425.
[12] 朱春凤,程永春,梁春雨,肖波. 硅藻土⁃玄武岩纤维复合改性沥青混合料路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(1): 165-173.
[13] 叶辉,朱艳荣,蒲永锋. 纤维增强复合材料应变率效应的数值仿真[J]. 吉林大学学报(工学版), 2019, 49(5): 1622-1629.
[14] 马芳武,韩露,周阳,王世英,蒲永锋. 采用聚乳酸复合材料的汽车零件多材料优化设计[J]. 吉林大学学报(工学版), 2019, 49(5): 1385-1391.
[15] 李碧雄,廖桥,章一萍,周练,隗萍,刘侃. 超高强钢筋工程用水泥基复合材料梁受弯计算理论[J]. 吉林大学学报(工学版), 2019, 49(4): 1153-1161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!