吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2300-2306.doi: 10.13229/j.cnki.jdxbgxb20210224
• 材料科学与工程 • 上一篇
Kai-feng YU1,2(),Xiao-ling HE1,2,Jun-tao LI3,Ce LIANG1,2()
摘要:
制备了玄武岩纤维(SBF)层间增韧玄武岩纤维/不饱和聚酯树脂(BF/UP)复合材料层压板,研究了SBF的长度和面密度对复合材料的II型层间断裂韧性、拉伸性能和弯曲性能的影响。研究表明,层间加入SBF能提高复合材料的II型层间断裂韧性、拉伸性能和弯曲性能。当SBF长度为6 mm、面密度为30 g/m2时,复合材料的II型层间断裂韧性、拉伸强度、断裂伸长率、弯曲强度和能量吸收得到了最大提升,分别为103%、27%、50%、101%和58%。
中图分类号:
1 | Carolan D, Ivankovic A, Kinloch A J, et al. Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices[J]. Journal of Materials Science, 2016, 52(3): 1767-1788. |
2 | Hernandez T P A, Mills A R, Yazdani Nezhad H. Shear driven deformation and damage mechanisms in High-performance carbon fibre-reinforced thermoplastic and toughened thermoset composites subjected to high strain loading[J]. Composite Structures, 2020, 261: No.113289. |
3 | Caminero M A, Rodr Guez G P, Chac N J M, et al. Tensile and flexural damage response of symmetric angle-ply carbon fiber-reinforced epoxy laminates: non‐linear response and effects of thickness and ply‐stacking sequence[J]. Polymer Composites, 2019, 40(9): 3678-3690. |
4 | Hu Y S, Cheng F, Ji Y, et al. Effect of aramid pulp on low temperature flexural properties of carbon fibre reinforced plastics[J]. Composites Science and Technology, 2020, 192: No.108095. |
5 | Huang J J, Ma C G, Wang S, et al. Improving fracture toughness of epoxy resin composites by magnetic particles modified short glass fiber[J]. IOP Conference Series: Materials Science and Engineering, 2019, 563: No. 022035. |
6 | Sun Z, Hu X Z, Chen H R. Effects of aramid-fibre toughening on interfacial fracture toughness of epoxy adhesive joint between carbon-fibre face sheet and aluminium substrate[J]. International Journal of Adhesion and Adhesives, 2014, 48: 288-294. |
7 | Ravindran A R, Ladani R B, Wu S, et al. Multi-scale toughening of epoxy composites via electric field alignment of carbon nanofibres and short carbon fibres[J]. Composites Science and Technology, 2018, 167: 115-125. |
8 | Yao J, Niu K, Niu Y, et al. Toughening efficiency and mechanism of carbon fibre epoxy matrix composites by PEK-C[J]. Composite Structures, 2019, 229: 111431. |
9 | Ravindran A R, Ladani R B, Wang C H, et al. Hierarchical mode I and mode II interlaminar toughening of Z-pinned composites using 1D and 2D carbon nanofillers[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105470. |
10 | Ladani R B, Ravomdram A R, Wu S, et al. Multi-scale toughening of fibre composites using carbon nanofibres and z-pins[J]. Composites Science and Technology, 2016, 131: 98-109. |
11 | Khandelwal S, Rhee K Y. Recent advances in basalt-fiber-reinforced composites: tailoring the fiber-matrix interface[J]. Composites Part B: Engineering, 2020, 192: 108011. |
12 | Zhao X, Wang X, Wu Z S, et al. Experimental study on effect of resin matrix in basalt fiber reinforced polymer composites under static and fatigue loading[J]. Construction and Building Materials, 2020, 242: 118121. |
[1] | 郑植,耿波,王福敏,董俊宏,魏思斯. 既有低等级混凝土护栏防护能力提升[J]. 吉林大学学报(工学版), 2022, 52(6): 1362-1374. |
[2] | 李伟,宋海生,陆浩宇,史文库,王强,王晓俊. 复合材料板簧迟滞特性线性辨识方法[J]. 吉林大学学报(工学版), 2022, 52(4): 829-836. |
[3] | 庄蔚敏,陈沈,吴迪. 碳纤维增强复合材料包裹强化形式对钢管横向冲击性能的影响[J]. 吉林大学学报(工学版), 2022, 52(4): 819-828. |
[4] | 卫宇璇,张明,刘佳,刘硕,路明雨,王洪雨. 基于模态缺陷的变刚度复合材料圆柱壳屈曲特性[J]. 吉林大学学报(工学版), 2022, 52(1): 91-100. |
[5] | 谷拴成,聂红宾. 极温冻融-荷载作用下碳纤维复合材料修复试件损伤分析[J]. 吉林大学学报(工学版), 2021, 51(6): 2108-2120. |
[6] | 刘寒冰,高鑫,宫亚峰,刘诗琪,李文俊. 表面处理对玄武岩纤维活性粉末混凝土力学性能的影响及断裂特性[J]. 吉林大学学报(工学版), 2021, 51(3): 936-945. |
[7] | 佟金,高子博,霍超,王子阳,马云海,常志勇. 低温下铜纳米颗粒对UHMWPE复合材料摩擦磨损性能影响[J]. 吉林大学学报(工学版), 2021, 51(2): 493-500. |
[8] | 杨帆,张旭东,赵蒙,折波,邓俊楷. 基于有限元计算的形状记忆合金⁃金属玻璃复合材料变形行为[J]. 吉林大学学报(工学版), 2021, 51(1): 172-180. |
[9] | 慕文龙,那景新,谭伟,王广彬,申浩,栾建泽. 基于FTIR分析的CFRP-铝合金粘接接头剩余强度预测[J]. 吉林大学学报(工学版), 2021, 51(1): 139-146. |
[10] | 李义,黄东迪,于开锋,梁继才,何小玲,任希彤. 硅炭黑改性玄武岩纤维增强聚酰胺6复合材料性能[J]. 吉林大学学报(工学版), 2021, 51(1): 181-187. |
[11] | 叶辉,刘畅,闫康康. 纤维增强复合材料在汽车覆盖件中的应用[J]. 吉林大学学报(工学版), 2020, 50(2): 417-425. |
[12] | 朱春凤,程永春,梁春雨,肖波. 硅藻土⁃玄武岩纤维复合改性沥青混合料路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(1): 165-173. |
[13] | 叶辉,朱艳荣,蒲永锋. 纤维增强复合材料应变率效应的数值仿真[J]. 吉林大学学报(工学版), 2019, 49(5): 1622-1629. |
[14] | 马芳武,韩露,周阳,王世英,蒲永锋. 采用聚乳酸复合材料的汽车零件多材料优化设计[J]. 吉林大学学报(工学版), 2019, 49(5): 1385-1391. |
[15] | 李碧雄,廖桥,章一萍,周练,隗萍,刘侃. 超高强钢筋工程用水泥基复合材料梁受弯计算理论[J]. 吉林大学学报(工学版), 2019, 49(4): 1153-1161. |
|