吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (2): 547-554.doi: 10.13229/j.cnki.jdxbgxb20210694

• 计算机科学与技术 • 上一篇    下一篇

基于集合阻塞的不确定系统中传感器选择方法

欧阳丹彤1,2(),孙睿2,3,田新亮1,2,高博涵3   

  1. 1.吉林大学 计算机科学与技术学院,长春 130012
    2.吉林大学 符号计算与知识工程教育部重点实验室,长春 130012
    3.吉林大学 软件学院,长春 130012
  • 收稿日期:2021-07-20 出版日期:2023-02-01 发布日期:2023-02-28
  • 作者简介:欧阳丹彤(1968-),女,教授,博士生导师.研究方向:人工智能,模型诊断.E-mail:ouyangdantong@163.com
  • 基金资助:
    吉林省教育厅科学研究项目(JJKH20211106KJ);国家自然科学基金项目(62076108)

Set blocking⁃based approach to sensor selection in uncertain systems

Dan-tong OU-YANG1,2(),Rui SUN2,3,Xin-liang TIAN1,2,Bo-han GAO3   

  1. 1.College of Computer Science and Technology,Jilin University,Changchun 130012,China
    2.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China
    3.Software College,Jilin University,Changchun 130012,China
  • Received:2021-07-20 Online:2023-02-01 Published:2023-02-28

摘要:

动态系统故障检测与隔离(FDI)的一个重要步骤是选择一组满足故障检测性与故障隔离性且花费最小的传感器集合。针对不确定系统,故障可诊断性量化方法被用来量化系统的故障检测性和故障隔离性。由于传感器选择问题的搜索空间随传感器规模增大呈指数增长,目前没有研究针对量化可诊断性的不确定系统提出传感器选择的完备方法。针对该问题本文提出基于集合阻塞策略的传感器选择算法:通过二进制整数优化问题(BILP)实现子集阻塞与超集阻塞;通过迭代阻塞搜索空间减小所需遍历的节点。在标准测试用例上的实验结果表明:针对实验中的绝大多数搜索空间,与深度优先遍历方法相比,本文方法效率提高了4.41~103.37倍。且在区分度计算次数相同的情况下,本文方法得到的大多数解优于现行的高效算法。

关键词: 故障诊断, 传感器选择, 基于模型诊断, 故障可诊断性分析

Abstract:

A significant step of fault detection and isolation(FDI) in dynamic systems is to select a set of sensors that meets the fault detectability and isolability with the least cost. For uncertain systems, the quantification method of fault distinguishability is used to quantify the fault diagnosability performance. Since the search space of the sensor selection problem increases exponentially with the increase of the sensor scale, there is currently no research on complete method of sensor selection for quantifying the fault diagnosability in uncertain systems. This paper proposes a sensor selection algorithm based on the set blocking strategy to solve this problem: realizing subset blocking and superset blocking through BILP; reducing the nodes that need to be traversed through iterative blocking search space. The experimental results show that compared with the depth-first traversal method, the efficiency of the proposed method is increased by 4.41~103.37 times for most of the use cases in the experiment.

Key words: fault diagnosis, sensor selection, model-based diagnosis, fault diagnosability analysis

中图分类号: 

  • TP306

图1

可行解与不可行解分布"

表1

基于集合阻塞的传感器选择算法与深度优先遍历的故障区分性计算次数"

αBlock-basedDepth FirstIncrease
0.9529411-0.22
0.85733 1014.41
0.759410 00115.84
0.61 32121 79915.50
0.53 07838 37911.47
0.461457 95493.39
0.31 07577 77271.35
0.21 12597 59395.75
0.11 125117 414103.37

表2

故障区分性计算次数与阻塞次数"

αJudging timesNumber of blockingratio
0.9529925.75
0.85731045.51
0.75941145.21
0.613212625.04
0.530785935.19
0.46141105.58
0.310751855.81
0.211251905.92
0.111251905.92

表3

迭代次数为500时两个算法的最优解"

αBlock-basedGSA
0.914.714.73
0.811.912.11
0.79.19.24
0.68.28.21
0.56.97.06
0.44.85.34
0.35.14.93
0.24.85.27
0.14.85.18

表4

迭代次数为1250时两个算法的最优解"

αBlock-basedGSA
0.914.314.39
0.811.211.87
0.78.88.79
0.67.57.83
0.56.96.93
0.44.85.10
0.34.94.97
0.24.85.02
0.14.85.04

表5

迭代次数为2000时两个算法的最优解"

αBlock-basedGSA
0.914.114.24
0.811.211.52
0.78.68.50
0.67.57.64
0.56.76.74
0.44.84.99
0.34.84.90
0.24.84.98
0.14.84.95
1 Hwang I, Kim S, Kim Y, et al. A survey of fault detection, isolation, and reconfiguration methods[J]. IEEE Transactions on Control Systems Technology, 2010, 18(3): 636-653.
2 欧阳丹彤, 刘伯文, 刘梦 等. 结合电路结构基于分块的诊断方法[J]. 电子学报, 2018, 46(7): 38-44.
Dan-tong Ou-yang, Liu Bo-wen, Liu Meng, et al.Diagnostic method based on block based on circuit structure[J]. Acta Electronica Sinica, 2018, 46(7): 38-44.
3 Frisk E, Krysander M, Jung D. A toolbox for analysis and design of model based diagnosis systems for large scale models[J]. IFAC World Congress, 2017, 50(1): 3287-3293.
4 Bhushan M, Narasimhan S, Rengaswamy R. Robust sensor network design for fault diagnosis[J]. Computers Chemical Engineering, 2008, 32(4): 1067-1084.
5 田乃予, 欧阳丹彤, 刘梦 等. 基于子集一致性检测的诊断解极小性判定方法[J]. 计算机研究与发展, 2019, 56(7): 1396-1407.
Tian Nai-yu, Dan-tong Ou-yang, Liu Meng, et al. Diagnostic solution minima determination method based on subset consistency detection[J]. Journal of Computer Research and Development, 2019, 56(7): 1396-1407.
6 Basseville M, Nveniste A, Moustakides B, et al.Optimal sensor location for detecting changes in dynamical behavior[J].[C]∥IEEE Conference on Decision and Control, New Orleans, USA, 1987: 1067-1075.
7 Debouk R, Lafortune S, Teneketzis D. On an optimization problem in sensor selection for failure diagnosis[J].[C]∥IEEE Conference on Decision and Control, New Orleans, USA, 2002: 317-445
8 Wang H, Song Z, Hui W. Statistical process monitoring using improved PCA with optimized sensor locations[J]. Journal of Process Control, 2002, 12(6): 735-744.
9 Frisk E, Krysander M, Slund J. Sensor placement for fault isolation in linear differential-algebraic systems[J]. Automatica, 2009, 45(2): 364-371.
10 Krysander M, Frisk E. Sensor placement for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2008, 38(6): 1398-1410.
11 Dulmage A L, Mendelsohn N S. Coverings of bipartite graphs[J]. Can J Math, 1958, 10: 517-534.
12 Trave-Massuyes L, Escobet T, Olive X. Diagnosability analysis based on component-supported analytical redundancy relations[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A, Systems and Humans, 2006, 36(5): 1146-1160.
13 Daigle M, Roychoudhury I, Bregon A. Diagnosability-based sensor placement through structural model decomposition[C]∥Second European Conference of the Prognostics and Health Management Society, Nantes, France, 2014: 1-14.
14 Yassine A A, Ploix S, Flaus J M. A method for sensor placement taking into account diagnosability criteria[J]. International Journal of Applied Mathematics and Computer Science, 2008, 18(4): 497-512.
15 Rosich A, Sarrate R, Puig V, et al. Efficient optimal sensor placement for model-based FDI using an incremental algorithm[C]∥IEEE Conference on Decision Control, New Orleans, USA, 2007: 3842-3847.
16 Commault C, Dion J M, Agha S Y.Structural analysis for the sensor location problem in fault detection and isolation[J]. Automatica, 2008, 44(8): 2074-2080.
17 Chamseddine A, Noura H, Raharijaona T, et al.Structural analysis-based sensor location for diagnosis as optimization problem[C]∥IEEE Conference on Decision Control, New Orleans, USA, 2007: 9885815.
18 Sarrate R, Puig V, Esco Be T T, et al. Optimal sensor placement for model-based fault detection and isolation[C]∥IEEE Conference on Decision and Control, New Orleans, USA, 2007: 2723-2728.
19 Akhielarab F N, Estruch R S, Oliva A R. Optimal sensor placement for fuel cell system diagnosis using BILP formulation[C]∥18th Mediterranean Conference on Control and Automation, Marrakech, Morocco, 2010: 1296-1301.
20 Eriksson D, Frisk E, Krysander M.A method for quantitative fault diagnosability analysis of stochastic linear descriptor models[J]. Automatica, 2013, 49(6): 1591-1600.
21 Jung D, Dong Y, Frisk E, et al. Sensor selection for fault diagnosis in uncertain systems[J]. International Journal of Control, 2020, 93(3): 629-639.
[1] 高文志,王彦军,王欣伟,张攀,李勇,董阳. 基于卷积神经网络的柴油机失火故障实时诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 417-424.
[2] 王进花,胡佳伟,曹洁,黄涛. 基于自适应变分模态分解和集成极限学习机的滚动轴承多故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 318-328.
[3] 董绍江,朱朋,裴雪武,李洋,胡小林. 基于子领域自适应的变工况下滚动轴承故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 288-295.
[4] 罗巍,卢博,陈菲,马腾. 基于PSO-SVM及时序环节的数控刀架故障诊断方法[J]. 吉林大学学报(工学版), 2022, 52(2): 392-399.
[5] 曹洁,马佳林,黄黛麟,余萍. 一种基于多通道马尔可夫变迁场的故障诊断方法[J]. 吉林大学学报(工学版), 2022, 52(2): 491-496.
[6] 邓飞跃,吕浩洋,顾晓辉,郝如江. 基于轻量化神经网络Shuffle⁃SENet的高速动车组轴箱轴承故障诊断方法[J]. 吉林大学学报(工学版), 2022, 52(2): 474-482.
[7] 张龙,徐天鹏,王朝兵,易剑昱,甄灿壮. 基于卷积门控循环网络的齿轮箱故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 368-376.
[8] 陈晓雷,孙永峰,李策,林冬梅. 基于卷积神经网络和双向长短期记忆的稳定抗噪声滚动轴承故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 296-309.
[9] 杜先君,贾亮亮. 基于优化堆叠降噪自编码器的滚动轴承故障诊断[J]. 吉林大学学报(工学版), 2022, 52(12): 2827-2838.
[10] 陈菲,杨峥,张志成,罗巍. 面向无标签数据的旋转机械故障诊断方法[J]. 吉林大学学报(工学版), 2022, 52(11): 2514-2522.
[11] 曹洁,何智栋,余萍,王进花. 数据不平衡分布下轴承故障诊断方法[J]. 吉林大学学报(工学版), 2022, 52(11): 2523-2531.
[12] 欧阳丹彤,张必歌,田乃予,张立明. 结合格局检测与局部搜索的故障数据缩减方法[J]. 吉林大学学报(工学版), 2021, 51(6): 2144-2153.
[13] 院老虎,连冬杉,张亮,刘义. 基于密集连接卷积网络和支持向量机的飞行器机械部件故障诊断[J]. 吉林大学学报(工学版), 2021, 51(5): 1635-1641.
[14] 欧阳丹彤,刘扬,刘杰. 故障响应指导下基于测试集的故障诊断方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1017-1025.
[15] 李伟,陈剑,陶善勇. 自适应耦合周期势系统随机共振信号增强方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1091-1096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[4] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[5] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[6] 杨庆芳,陈林 . 交通控制子区动态划分方法[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[7] 于华楠,康健 . 改进的基于Kalman滤波的盲多用户检测算法
[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 122 -125 .
[8] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[9] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[10] 曲昭伟,陈红艳,李志慧,胡宏宇,魏巍 . 基于单模板的二维场景重建方法[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .