吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (1): 61-71.doi: 10.13229/j.cnki.jdxbgxb20210596
孙耀1(),胡云峰1,周杰敏2,程欢2,曲婷1(),赵靖华1,3,陈虹4
Yao SUN1(),Yun-feng HU1,Jie-min ZHOU2,Huan CHENG2,Ting QU1(),Jing-hua ZHAO1,3,Hong CHEN4
摘要:
为保证选择性催化还原(SCR)系统的转化效率并减少尿素消耗量,本文基于氨覆盖率设计了一种新颖的分层控制器,上层为模型预测控制(MPC)氨覆盖率优化控制器,实时优化计算得到的氨覆盖率目标值;下层为三步法非线性跟踪控制器,结合类稳态控制、参考前馈控制、变增益反馈控制跟踪参考目标。在仿真环境与原机电子控制单元(ECU)进行对比验证,分层控制器的关键指标均有所提升,氨逃逸下降超过85%,NO x 比排放下降27.4%,尿素消耗量降低5%。结果表明,本文提出的优化方法具有较强的应用价值。
中图分类号:
1 | 中华人民共和国生态环境部.柴油货车污染治理攻坚战行动计划[J]. 商用汽车, 2019, 339(1): 6. |
Ministry of Ecology and Environment of the People's Republic of China. Diesel truck pollution control battle action plan[J]. Commercial Vehicle, 2019, 339(1): 6. | |
2 | Zhao J, Chen Z, Hu Y, et al. Urea-SCR process control for diesel engine using feedforward-feedback nonlinear method[C]//The 9th IFAC Symposium on Advanced Control of Chemical Processes, Whistler: Canda, 2015: 367-372. |
3 | Reşitoğlu İ A, Altinişik K, Keskin A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems[J]. Clean Technologies and Environmental Policy, 2015, 17(1): 15-27. |
4 | Yuan X, Liu H, Gao Y. Diesel engine SCR control: current development and future challenges[J]. Emission Control Science and Technology, 2015, 1(2): 121-133. |
5 | Joshi A. Review of vehicle engine efficiency and emissions[J]. SAE International Journal of Advances and Current Practices in Mobility, 2019, 1: 734-761. |
6 | 中华人民共和国生态环境部. 中国移动源环境管理年报(2020)[J]. 中国能源, 2020(8): 1. |
Ministry of Ecology and Environment of the People's Republic of China. China mobile source environmental management annual report (2020)[J]. China Energy, 2020(8): 1. | |
7 | Johnson T, Joshi A. Review of vehicle engine efficiency and emissions[J]. SAE International Journal of Engines, 2018, 11(6): 1307-1330. |
8 | Charlton S, Dollmeyer T, Grana T. Meeting the US heavy duty EPA 2010 standards and providing increased value for the customer[J]. SAE International Journal of Commercial Vehicle, 2010, 3(1): 101⁃110. |
9 | Walker A. Future challenges and incoming solutions in emission control for heavy duty diesel vehicles[J]. Topics in Catalysis, 2016, 59(8/9): 695⁃707. |
10 | Yao M, Wang J. Model-based control of automotive selective catalytic reduction systems with road grade preview[C]//Proceedings of the American Control Conference, Milwaukee,USA, 2018: 7-12. |
11 | Johnson T. Vehicular emissions in review[J]. SAE International Journal of Engines, 2013, 6(2): 699-715. |
12 | Shimizu K, Satsuma A. Hydrogen assisted urea-SCR and NH3-SCR with silver–alumina as highly active and SO2-tolerant de-NO x catalysis[J]. Applied Catalysis B: Environmental, 2007, 77: 202⁃205. |
13 | Hollauf B, Breitschädel B, Sacher T, et al. Highest NO x conversion in SCR catalysts through model based control[C]//SAE Paper, 2011-26-0042. |
14 | Upadhyay D, Nieuwstadt M V. Model based analysis and control design of a Urea-SCR deNO x aftertreatment system[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2006, 128: 737-741. |
15 | Devarakonda M, Parker G, Johnson J H, et al. Model- based estimation and control system development in a Urea-SCR aftertreatment system[C]∥SAE Paper, 2008-01-1324. |
16 | Chi J N, Dacosta H F M. Modeling and control of a urea-SCR aftertreatment system[C]∥SAE Paper, 2005-01-0966. |
17 | 胡静, 赵彦光, 陈婷,等. 重型柴油机尿素SCR后处理系统的控制策略研究[J]. 内燃机工程, 2011, 32(2): 1-5. |
Hu Jing, Zhao Yan-guang, Chen Ting, et al. Study of control strategy for Urea-SCR after-treatment system of heavy duty diesel engine[J]. Chinese Internal Combustion Engine Engineering, 2011, 32(2): 1-5. | |
18 | 胡静, 赵彦光, 陈婷,等. 重型柴油机SCR后处理系统尿素喷射电子控制单元开发[J]. 内燃机工程, 2011, 32(1): 8-11. |
Hu Jing, Zhao Yan-guang, Chen Ting, et al. Development of urea dosing control unit for SCR after-treatment system of heavy duty diesel engine[J]. Chinese Internal Combustion Engine Engineering, 2011, 32(1): 8-11. | |
19 | Hsieh M F, Wang J. Design and experimental validation of an extended kalman filter-based NO x concentration estimator in selective catalytic reduction system applications[J]. Control Engineering Practice, 2011, 19(4): 346-353. |
20 | Aliramezani M, Koch C R, Hayes R E. Estimating tailpipe NO x concentration using a dynamic NO x / ammonia cross sensitivity model coupled to a three state control oriented SCR model[J]. IFAC-Papers Online, 2016, 49(11): 8-13. |
21 | Stadlbauer S, Waschl H, del Re L. SCR ammonia dosing control by a nonlinear model predictive controller[J]. IFAC Proceedings Volumes, 2014, 47(3): 3018-3023. |
22 | 汤佳明. 基于氨存储控制策略的 SCR 系统研究与开发[D]. 无锡: 江南大学机械工程学院, 2018. |
Tang Jia-ming. Research and development of SCR system based on the control strategy of ammonia storage[D]. Wuxi: College of Mechanical Engineering, Jiangnan University, 2018. | |
23 | 谢澜涛, 谢磊, 苏宏业.不确定系统的鲁棒与随机模型预测控制算法比较研究[J]. 自动化学报,2017,43(6): 969-992. |
Xie Lan-tao, Xie Lei, Su Hong-ye. A comparative study on algorithms of robust and stochastic MPC for uncertain systems[J]. Acta Automatica Sinica, 2017, 43(6): 969- 992. | |
24 | 席裕庚, 李德伟, 林姝. 模型预测控制-现状与挑战[J]. 自动化学报,2013,39(3): 222-236. |
Xi Yu-geng, Li De-lin, Lin Zhu. Model predictive control - status and challenges[J]. Acta Automatica Sinica, 2013,39(3): 222-236. | |
25 | Qin S J, Badgwell T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003, 11(7): 733-764. |
26 | Chen H, Gong X, Liu Q F, et al. Triple-step method to design non-linear controller for rail pressure of gasoline direct injection engines[J]. IET Control Theory and Applications, 2014, 8(11): 948-959. |
27 | Zhao H Y, Gao B Z, Ren B T, et al. Integrated control of in-wheel motor electric vehicles using a triple-step nonlinear method[J]. Journal of the Franklin Institute- Engineering and Applied Mathematics, 2015, 352(2): 519-540. |
28 | 赵靖华, 陈志刚, 胡云峰,等. 基于"三步法"的柴油机urea-SCR系统控制设计[J]. 吉林大学学报:工学版, 2015, 45 (6): 182-192. |
Zhao Jing-hua, Chen Zhi-gang, Hu Yun-feng, et al. Design of diesel engine's urea SCR system controller using triple-step method[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(6): 182-192. | |
29 | 侯加林,王一鸣,展志刚,等. 基于改进型非线性最小二乘法的作物模型隐含参数估计[J]. 农业机械学报,2015, 36(5): 75-79. |
Hou Jia-lin, Wang Yi-ming, Zhan Zhi-gang, et al. Application of nonlinear least squares method to crop growth structure function simulation model[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 36(5): 75-79. | |
30 | 李晓东. 同步发电机励磁系统建模及参数辨识[D]. 南京: 南京理工大学自动化学院,2010. |
Li Xiao-dong. The modeling and parameter identification of excitation system of Synchronous generator[D]. Nanjing: College of Automation, Nanjing University of Technology, 2010. |
[1] | 王德军,张凯然,徐鹏,顾添骠,于文雅. 基于车辆执行驱动能力的复杂路况速度规划及控制[J]. 吉林大学学报(工学版), 2023, 53(3): 643-652. |
[2] | 谢波,高榕,许富强,田彦涛. 低附着路况条件下人车共享转向系统稳定控制[J]. 吉林大学学报(工学版), 2023, 53(3): 713-725. |
[3] | 申富媛,李炜,蒋栋年. 四旋翼无人机寿命预测和自主维护方法[J]. 吉林大学学报(工学版), 2023, 53(3): 841-852. |
[4] | 何德峰,周丹,罗捷. 跟随式车辆队列高效协同弦稳定预测控制[J]. 吉林大学学报(工学版), 2023, 53(3): 726-734. |
[5] | 高金武,王义琳,刘华洋,王艺达. 基于滑模观测器的质子交换膜燃料电池阴极进气系统解耦控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2156-2167. |
[6] | 胡云峰,于彤,杨惠策,孙耀. 低温环境下燃料电池启动优化控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 2034-2043. |
[7] | 高金武,贾志桓,王向阳,邢浩. 基于PSO-LSTM的质子交换膜燃料电池退化趋势预测[J]. 吉林大学学报(工学版), 2022, 52(9): 2192-2202. |
[8] | 李昂,杨泓渊,雷小萌,宋凯文,千承辉. 基于等效连杆模型的六足机器人行进姿态闭环控制[J]. 吉林大学学报(工学版), 2022, 52(7): 1696-1708. |
[9] | 吴文静,战勇斌,杨丽丽,陈润超. 考虑安全间距的合流区可变限速协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(6): 1315-1323. |
[10] | 李文航,倪涛,赵丁选,张泮虹,师小波. 基于集合卡尔曼滤波的高机动救援车辆主动悬挂控制方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2816-2826. |
[11] | 朱航,于瀚博,梁佳辉,李宏泽. 基于电场模型的无人机搜寻改进算法及仿真分析[J]. 吉林大学学报(工学版), 2022, 52(12): 3029-3038. |
[12] | 彭浩楠,唐明环,查奇文,王伟忠,王伟达,项昌乐,刘玉龙. 自动驾驶汽车双车道换道最优轨迹规划方法[J]. 吉林大学学报(工学版), 2022, 52(12): 2852-2863. |
[13] | 杨志军,高忠义,王丽君,黄观新,危宇泰. 面向刚柔耦合定位平台的模型预测控制算法[J]. 吉林大学学报(工学版), 2022, 52(12): 2806-2815. |
[14] | 鲜斌,张诗婧,韩晓薇,蔡佳明,王岭. 基于强化学习的无人机吊挂负载系统轨迹规划[J]. 吉林大学学报(工学版), 2021, 51(6): 2259-2267. |
[15] | 许芳,张君明,胡云峰,曲婷,曲逸,刘奇芳. 智能车辆路径跟踪横纵向耦合实时预测控制器[J]. 吉林大学学报(工学版), 2021, 51(6): 2287-2294. |
|